NAs in TSSE for certain windows
0
0
Entering edit mode
red_bricks ▴ 60
@red_bricks-14034
Last seen 6 months ago
United States

Hello,

I am getting NAs from TSSEscore() in some of the 20 windows. They occur mostly in the windows before the TSS. Do you have any idea what may be causing this or how I could go about figuring out what is going on? I have 35 samples and they all show this effect. The input alignments were produced with bwa mem -t {threads} {bwa_idx} {input} | samblaster --addMateTags | samtools sort -m 6G -@ {threads} -O "BAM" -o {output.outbam} -.

Thanks!


R version 4.1.0 (2021-05-18) -- "Camp Pontanezen"
Copyright (C) 2021 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

  Natural language support but running in an English locale

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(ATACseqQC)
Loading required package: BiocGenerics
Loading required package: parallel

Attaching package: ‘BiocGenerics’

The following objects are masked from ‘package:parallel’:

    clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,
    clusterExport, clusterMap, parApply, parCapply, parLapply,
    parLapplyLB, parRapply, parSapply, parSapplyLB

The following objects are masked from ‘package:stats’:

    IQR, mad, sd, var, xtabs

The following objects are masked from ‘package:base’:

    anyDuplicated, append, as.data.frame, basename, cbind, colnames,
    dirname, do.call, duplicated, eval, evalq, Filter, Find, get, grep,
    grepl, intersect, is.unsorted, lapply, Map, mapply, match, mget,
    order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank,
    rbind, Reduce, rownames, sapply, setdiff, sort, table, tapply,
    union, unique, unsplit, which.max, which.min

Loading required package: S4Vectors
Loading required package: stats4

Attaching package: ‘S4Vectors’

The following objects are masked from ‘package:base’:

    expand.grid, I, unname

> library(stringr)
> library(dplyr)

Attaching package: 'dplyr'

The following objects are masked from 'package:S4Vectors':

    first, intersect, rename, setdiff, setequal, union

The following objects are masked from 'package:BiocGenerics':

    combine, intersect, setdiff, union

The following objects are masked from 'package:stats':

    filter, lag

The following objects are masked from 'package:base':

    intersect, setdiff, setequal, union

> library(readr)
> library(GenomicFeatures)
Loading required package: IRanges

Attaching package: 'IRanges'

The following objects are masked from 'package:dplyr':

    collapse, desc, slice

Loading required package: GenomeInfoDb
Loading required package: GenomicRanges
Loading required package: AnnotationDbi
Loading required package: Biobase
Welcome to Bioconductor

    Vignettes contain introductory material; view with
    'browseVignettes()'. To cite Bioconductor, see
    'citation("Biobase")', and for packages 'citation("pkgname")'.


Attaching package: 'AnnotationDbi'

The following object is masked from 'package:dplyr':

    select

> args <- c("./analysis/bwamem/626A.bam","bin/testatacseqqc/","TxDb.Mmusculus.UCSC.mm10.knownGene")
> bamfile <- args[1]
> known_genes_lib <- args[3]

> ## bamfile tags to be read in
> possibleTag <- list("integer"=c("AM", "AS", "CM", "CP", "FI", "H0", "H1", "H2",
+                                 "HI", "IH", "MQ", "NH", "NM", "OP", "PQ", "SM",
+                                 "TC", "UQ"),
+                  "character"=c("BC", "BQ", "BZ", "CB", "CC", "CO", "CQ", "CR",
+                                "CS", "CT", "CY", "E2", "FS", "LB", "MC", "MD",
+                                "MI", "OA", "OC", "OQ", "OX", "PG", "PT", "PU",
+                                "Q2", "QT", "QX", "R2", "RG", "RX", "SA", "TS",
+                                "U2"))
> library(Rsamtools)
> bamTop100 <- scanBam(BamFile(bamfile, yieldSize = 100),
+                      param = ScanBamParam(tag=unlist(possibleTag)))[[1]]$tag
> tags <- names(bamTop100)[lengths(bamTop100)>0]
> tags
   integer2   integer11   integer13 character15 character16
       "AS"        "MQ"        "NM"        "MC"        "MD"
> gal <- readBamFile(bamfile, asMates=FALSE, tag=tags, bigFile=TRUE)
> gal1 <- gal

> library(known_genes_lib, character.only=TRUE)
> txs <- transcripts(eval(as.name(known_genes_lib)))

> txs <- keepStandardChromosomes(txs, pruning.mode = 'coarse')

>
> tsse <- TSSEscore(gal1, txs)
> tsse
$values
        1         2         3         4         5         6         7         8
      NaN       NaN       NaN       NaN       NaN       NaN       NaN       NaN
        9        10        11        12        13        14        15        16
      NaN       NaN 22.102069 16.191962 11.392983  8.235327  5.965839  4.574932
       17        18        19        20
 3.511574  2.876810  2.425101       NaN

$TSSEscore
[1] 22.10207

> sessionInfo()
R version 4.1.0 (2021-05-18)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: CentOS Linux 7 (Core)

Matrix products: default
BLAS:   /R/build-4.1.0/lib64/R/lib/libRblas.so
LAPACK: /R/build-4.1.0/lib64/R/lib/libRlapack.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C
 [9] LC_ADDRESS=C               LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C

attached base packages:
[1] stats4    parallel  stats     graphics  grDevices utils     datasets
[8] methods   base

other attached packages:
 [1] TxDb.Mmusculus.UCSC.mm10.knownGene_3.10.0
 [2] Rsamtools_2.8.0
 [3] Biostrings_2.60.2
 [4] XVector_0.32.0
 [5] GenomicFeatures_1.44.1
 [6] AnnotationDbi_1.54.1
 [7] Biobase_2.52.0
 [8] GenomicRanges_1.44.0
 [9] GenomeInfoDb_1.28.1
[10] IRanges_2.26.0
[11] readr_2.0.1
[12] dplyr_1.0.7
[13] stringr_1.4.0
[14] ATACseqQC_1.16.0
[15] S4Vectors_0.30.0
[16] BiocGenerics_0.38.0

loaded via a namespace (and not attached):
  [1] colorspace_2.0-2              rjson_0.2.20
  [3] ellipsis_0.3.2                futile.logger_1.4.3
  [5] ChIPpeakAnno_3.26.3           bit64_4.0.5
  [7] interactiveDisplayBase_1.30.0 fansi_0.5.0
  [9] xml2_1.3.2                    motifStack_1.36.0
 [11] splines_4.1.0                 cachem_1.0.6
 [13] ade4_1.7-17                   polynom_1.4-0
 [15] dbplyr_2.1.1                  png_0.1-7
 [17] graph_1.70.0                  shiny_1.6.0
 [19] HDF5Array_1.20.0              BiocManager_1.30.16
 [21] compiler_4.1.0                httr_1.4.2
 [23] assertthat_0.2.1              Matrix_1.3-3
 [25] fastmap_1.1.0                 lazyeval_0.2.2
 [27] limma_3.48.3                  later_1.3.0
 [29] formatR_1.11                  htmltools_0.5.1.1
 [31] prettyunits_1.1.1             tools_4.1.0
 [33] gtable_0.3.0                  glue_1.4.2
 [35] GenomeInfoDbData_1.2.6        rappdirs_0.3.3
 [37] Rcpp_1.0.7                    vctrs_0.3.8
 [39] rhdf5filters_1.4.0            multtest_2.48.0
 [41] rtracklayer_1.52.1            mime_0.11
 [43] lifecycle_1.0.0               restfulr_0.0.13
 [45] ensembldb_2.16.4              XML_3.99-0.7
 [47] InteractionSet_1.20.0         AnnotationHub_3.0.1
 [49] edgeR_3.34.0                  zlibbioc_1.38.0
 [51] MASS_7.3-54                   scales_1.1.1
 [53] BSgenome_1.60.0               promises_1.2.0.1
 [55] hms_1.1.0                     MatrixGenerics_1.4.2
 [57] ProtGenerics_1.24.0           SummarizedExperiment_1.22.0
 [59] RBGL_1.68.0                   rhdf5_2.36.0
 [61] AnnotationFilter_1.16.0       lambda.r_1.2.4
 [63] yaml_2.2.1                    curl_4.3.2
 [65] memoise_2.0.0                 ggplot2_3.3.5
 [67] biomaRt_2.48.3                stringi_1.7.3
 [69] RSQLite_2.2.8                 BiocVersion_3.13.1
 [71] BiocIO_1.2.0                  randomForest_4.6-14
 [73] filelock_1.0.2                BiocParallel_1.26.2
 [75] rlang_0.4.11                  pkgconfig_2.0.3
 [77] matrixStats_0.60.1            bitops_1.0-7
 [79] lattice_0.20-44               purrr_0.3.4
 [81] Rhdf5lib_1.14.2               htmlwidgets_1.5.3
 [83] GenomicAlignments_1.28.0      bit_4.0.4
 [85] tidyselect_1.1.1              magrittr_2.0.1
 [87] R6_2.5.1                      generics_0.1.0
 [89] DelayedArray_0.18.0           DBI_1.1.1
 [91] preseqR_4.0.0                 pillar_1.6.2
 [93] survival_3.2-11               KEGGREST_1.32.0
 [95] RCurl_1.98-1.4                tibble_3.1.3
 [97] crayon_1.4.1                  futile.options_1.0.1
 [99] KernSmooth_2.23-20            utf8_1.2.2
[101] BiocFileCache_2.0.0           tzdb_0.1.2
[103] progress_1.2.2                locfit_1.5-9.4
[105] grid_4.1.0                    blob_1.2.2
[107] GenomicScores_2.4.0           digest_0.6.27
[109] xtable_1.8-4                  VennDiagram_1.6.20
[111] httpuv_1.6.2                  regioneR_1.24.0
[113] munsell_0.5.0
ATACseqQC • 624 views
ADD COMMENT

Login before adding your answer.

Traffic: 523 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6