Hello,
I am currently using DiffBind to analyze ATAC-seq data. I noticed that when I called DESeq2::results
to analyze the DESeq2 object retrieved from dba.analyze
using the parameters alpha = 0.05, lfcThreshold = log2(1.3)
, it gave me a different number of DB sites from dba.report
using th = 0.05, fold = log2(1.3)
. I figured that DiffBind did ad hoc filtering in which the fold
parameter was only used to filter peaks after the DESeq2::results
using alpha = 0.05
is done. But what I would like to do is to include the fold change parameter in the statistical testing. The output of DESeq2::results
of the retrieved DESeq2 object though lack the peak information (chr, start, end), so I can not directly use it for any further analysis. The rownames of the output dataframe are simply 1, 2, 3, 4, 5...
I was wondering if there is a way to recover the peak info so I can directly use the results of DESeq2::results
? Or how can I include the fold
value in the statistical testing when calling dba.report
? Thank you so much!!!
sessionInfo( )
R version 4.1.0 (2021-05-18)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS Big Sur 10.16
Matrix products: default
LAPACK: /Library/Frameworks/R.framework/Versions/4.1/Resources/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] parallel stats4 stats graphics grDevices utils datasets methods base
other attached packages:
[1] edgeR_3.34.0 limma_3.48.0
[3] DESeq2_1.32.0 org.Mm.eg.db_3.13.0
[5] TxDb.Mmusculus.UCSC.mm10.knownGene_3.10.0 GenomicFeatures_1.44.0
[7] AnnotationDbi_1.54.1 ChIPseeker_1.28.3
[9] data.table_1.14.0 DiffBind_3.2.2
[11] SummarizedExperiment_1.22.0 Biobase_2.52.0
[13] MatrixGenerics_1.4.0 matrixStats_0.59.0
[15] GenomicRanges_1.44.0 GenomeInfoDb_1.28.0
[17] IRanges_2.26.0 S4Vectors_0.30.0
[19] BiocGenerics_0.38.0
loaded via a namespace (and not attached):
[1] utf8_1.2.1 tidyselect_1.1.1
[3] RSQLite_2.2.7 grid_4.1.0
[5] BiocParallel_1.26.0 scatterpie_0.1.6
[7] munsell_0.5.0 base64url_1.4
[9] systemPipeR_1.26.2 withr_2.4.2
[11] colorspace_2.0-1 GOSemSim_2.18.0
[13] Category_2.58.0 filelock_1.0.2
[15] knitr_1.33 rstudioapi_0.13
[17] DOSE_3.18.0 bbmle_1.0.23.1
[19] GenomeInfoDbData_1.2.6 mixsqp_0.3-43
[21] hwriter_1.3.2 polyclip_1.10-0
[23] bit64_4.0.5 farver_2.1.0
[25] pheatmap_1.0.12 treeio_1.16.1
[27] coda_0.19-4 batchtools_0.9.15
[29] vctrs_0.3.8 generics_0.1.0
[31] xfun_0.23 csaw_1.26.0
[33] BiocFileCache_2.0.0 R6_2.5.0
[35] apeglm_1.14.0 graphlayouts_0.7.1
[37] invgamma_1.1 locfit_1.5-9.4
[39] rsvg_2.1.2 bitops_1.0-7
[41] cachem_1.0.5 fgsea_1.18.0
[43] DelayedArray_0.18.0 assertthat_0.2.1
[45] BiocIO_1.2.0 scales_1.1.1
[47] ggraph_2.0.5 enrichplot_1.12.0
[49] gtable_0.3.0 tidygraph_1.2.0
[51] rlang_0.4.11 genefilter_1.74.0
[53] splines_4.1.0 lazyeval_0.2.2
[55] rtracklayer_1.52.0 brew_1.0-6
[57] checkmate_2.0.0 BiocManager_1.30.15
[59] yaml_2.2.1 reshape2_1.4.4
[61] backports_1.2.1 qvalue_2.24.0
[63] RBGL_1.68.0 tools_4.1.0
[65] ggplot2_3.3.3 ellipsis_0.3.2
[67] gplots_3.1.1 RColorBrewer_1.1-2
[69] Rcpp_1.0.6 plyr_1.8.6
[71] progress_1.2.2 zlibbioc_1.38.0
[73] purrr_0.3.4 RCurl_1.98-1.3
[75] prettyunits_1.1.1 viridis_0.6.1
[77] cowplot_1.1.1 ashr_2.2-47
[79] ggrepel_0.9.1 tinytex_0.32
[81] magrittr_2.0.1 DO.db_2.9
[83] truncnorm_1.0-8 mvtnorm_1.1-2
[85] SQUAREM_2021.1 amap_0.8-18
[87] patchwork_1.1.1 hms_1.1.0
[89] evaluate_0.14 xtable_1.8-4
[91] XML_3.99-0.6 emdbook_1.3.12
[93] jpeg_0.1-8.1 gridExtra_2.3
[95] compiler_4.1.0 biomaRt_2.48.0
[97] bdsmatrix_1.3-4 tibble_3.1.2
[99] shadowtext_0.0.8 KernSmooth_2.23-20
[101] V8_3.4.2 crayon_1.4.1
[103] htmltools_0.5.1.1 GOstats_2.58.0
[105] aplot_0.0.6 tidyr_1.1.3
[107] geneplotter_1.70.0 DBI_1.1.1
[109] tweenr_1.0.2 dbplyr_2.1.1
[111] MASS_7.3-54 rappdirs_0.3.3
[113] boot_1.3-28 ShortRead_1.50.0
[115] Matrix_1.3-4 cli_2.5.0
[117] metapod_1.0.0 igraph_1.2.6
[119] pkgconfig_2.0.3 TxDb.Hsapiens.UCSC.hg19.knownGene_3.2.2
[121] rvcheck_0.1.8 GenomicAlignments_1.28.0
[123] numDeriv_2016.8-1.1 ggtree_3.0.2
[125] annotate_1.70.0 XVector_0.32.0
[127] AnnotationForge_1.34.0 stringr_1.4.0
[129] VariantAnnotation_1.38.0 digest_0.6.27
[131] graph_1.70.0 Biostrings_2.60.1
[133] rmarkdown_2.8 fastmatch_1.1-0
[135] tidytree_0.3.4 GSEABase_1.54.0
[137] restfulr_0.0.13 GreyListChIP_1.24.0
[139] curl_4.3.1 Rsamtools_2.8.0
[141] gtools_3.9.2 rjson_0.2.20
[143] nlme_3.1-152 lifecycle_1.0.0
[145] jsonlite_1.7.2 viridisLite_0.4.0
[147] BSgenome_1.60.0 fansi_0.5.0
[149] pillar_1.6.1 lattice_0.20-44
[151] plotrix_3.8-1 KEGGREST_1.32.0
[153] fastmap_1.1.0 httr_1.4.2
[155] survival_3.2-11 GO.db_3.13.0
[157] glue_1.4.2 png_0.1-7
[159] bit_4.0.4 Rgraphviz_2.36.0
[161] ggforce_0.3.3 stringi_1.6.2
[163] blob_1.2.1 latticeExtra_0.6-29
[165] caTools_1.18.2 memoise_2.0.0
[167] DOT_0.1 dplyr_1.0.6
[169] ape_5.5 irlba_2.3.3
Thank you so much for the quick response, Rory!!! Happy to hear that this feature will be included in the next release. I just mapped the consensus peak back to the DESeq2 results and it worked perfectly! Thank you!