How can I get normalized counts with ImpulseDE2?
0
0
Entering edit mode
MU • 0
@037ddc51
Last seen 3.7 years ago
Japan

Hi, I am trying RNA-seq analysis with ImpluseDE2. As a next step, I want to make a plot of normalized counts for each genes I am interested in, or make do co-expression analysis with metabolome data. How can I get the normalized count data for each gene? And, I don't understand how to use "Timecatg" in dfannotation. How should I set this parameter?

Any advice you could give would be much appreciated. I apologize if my English is difficult to understand.

ImpulseDE2 • 1.1k views
ADD COMMENT
0
Entering edit mode

I also have similar issue. I think the best way to do this is use plotHeatmap function or rather its truncated version. I paste the code below:

objectImpulseDE2 <- objectImpulseDE2 # object, which is an output from runImpulseDE2 function
strCondition  <- "case"
boolIdentifyTransients <- TRUE # TRUE or FALSE, dependent on your analysis, it should work in both cases
scaQThres <- 0.05 # adjusted pvalue threshold for your analysis 

#for some unknown reasons I have to define evalImpulse_comp function, which should be already defined

evalImpulse_comp <- function(vecImpulseParam, vecTimepoints) 
{
   vecImpulseValue <- sapply(vecTimepoints, function(t) {
      (1/vecImpulseParam[3]) * (vecImpulseParam[2] + (vecImpulseParam[3] - 
        vecImpulseParam[2]) * (1/(1 + exp(-vecImpulseParam[1] * 
        (t - vecImpulseParam[5]))))) * (vecImpulseParam[4] + 
        (vecImpulseParam[3] - vecImpulseParam[4]) * (1/(1 + 
            exp(vecImpulseParam[1] * (t - vecImpulseParam[6])))))
   })
   vecImpulseValue[vecImpulseValue < 10^(-10)] <- 10^(-10)
   return(vecImpulseValue)
}

#now its time to define our function of interest, which is a simple truncation of plotHeatmap
get_norm_count_table <- function(objectImpulseDE2, strCondition, boolIdentifyTransients, scaQThres)
{
dfAnnot <- get_dfAnnotationProc(obj = objectImpulseDE2)
scaNGenes <- dim(get_matCountDataProc(obj = objectImpulseDE2))[1]
vecSignificantIDs <- rownames(objectImpulseDE2$dfImpulseDE2Results[!is.na(objectImpulseDE2$dfImpulseDE2Results$padj) & 
    objectImpulseDE2$dfImpulseDE2Results$padj < scaQThres, 
    ])
vecTimePointsToEval <- sort(unique(dfAnnot$Time), decreasing = FALSE)
scaNTPtoEvaluate <- length(vecTimePointsToEval)
matImpulseValue <- do.call(rbind, lapply(vecSignificantIDs, 
    function(x) {
        evalImpulse_comp(vecImpulseParam = get_lsModelFits(obj = objectImpulseDE2)[[strCondition]][[x]]$lsImpulseFit$vecImpulseParam, 
            vecTimepoints = vecTimePointsToEval)
    }))
rownames(matImpulseValue) <- vecSignificantIDs
matidxMaxTimeSort <- t(apply(matImpulseValue, 1, function(genevalues) {
    sort(genevalues, decreasing = TRUE, index.return = TRUE)$ix
}))
vecMaxTime <- vecTimePointsToEval[matidxMaxTimeSort[, 1]]
matidxMinTimeSort <- t(apply(matImpulseValue, 1, function(genevalues) {
    sort(genevalues, decreasing = FALSE, index.return = TRUE)$ix
}))
if (boolIdentifyTransients) {
    vecidxTransient <- which(objectImpulseDE2$dfImpulseDE2Results[vecSignificantIDs, 
        ]$isTransient)
    vecidxMonotonous <- which(objectImpulseDE2$dfImpulseDE2Results[vecSignificantIDs, 
        ]$isMonotonous)
    if (length(vecidxMonotonous) == 1) {
        matImpulseMonot <- t(matImpulseValue[vecidxMonotonous, 
            ])
    }
    else {
        matImpulseMonot <- matImpulseValue[vecidxMonotonous, 
            ]
    }
    vecboolMonotonousUp <- apply(matImpulseMonot, 1, function(gene) {
        gene[1] < gene[scaNTPtoEvaluate]
    })
    vecboolMonotonousDown <- !vecboolMonotonousUp
    vecidxMonotonousUp <- vecidxMonotonous[vecboolMonotonousUp]
    vecidxMonotonousUpSort <- vecidxMonotonousUp[do.call(order, 
        as.data.frame(matidxMinTimeSort[vecidxMonotonousUp, 
            1]))]
    vecidxMonotonousDown <- vecidxMonotonous[vecboolMonotonousDown]
    vecidxMonotonousDownSort <- vecidxMonotonousDown[do.call(order, 
        as.data.frame(matidxMinTimeSort[vecidxMonotonousDown, 
            1]))]
    if (length(vecidxTransient) == 1) {
        matImpulseTransient <- t(matImpulseValue[vecidxTransient, 
            ])
    }
    else {
        matImpulseTransient <- matImpulseValue[vecidxTransient, 
            ]
    }
    vecboolTransientValley <- apply(matImpulseTransient, 
        1, function(genevalues) {
            boolValley <- any(genevalues[2:(scaNTPtoEvaluate - 
              1)] < genevalues[1] & genevalues[2:(scaNTPtoEvaluate - 
              1)] < genevalues[scaNTPtoEvaluate])
            return(boolValley)
        })
    vecboolTransientPeak <- !vecboolTransientValley
    vecidxTransientPeak <- vecidxTransient[vecboolTransientPeak]
    vecidxTransientPeakSort <- vecidxTransientPeak[do.call(order, 
        as.data.frame(matidxMaxTimeSort[vecidxTransientPeak, 
            1]))]
    vecidxTransientValley <- vecidxTransient[vecboolTransientValley]
    vecidxTransientValleySort <- vecidxTransientValley[do.call(order, 
        as.data.frame(matidxMinTimeSort[vecidxTransientValley, 
            1]))]
    vecidxAllSort <- c(vecidxMonotonousUpSort, vecidxMonotonousDownSort, 
        vecidxTransientPeakSort, vecidxTransientValleySort)
    vecTrajectoryType <- c(rep("up", length(vecidxMonotonousUpSort)), 
        rep("down", length(vecidxMonotonousDownSort)), rep("*up", 
            length(vecidxTransientPeakSort)), rep("*down", 
            length(vecidxTransientValleySort)))
    lsvecGeneGroups <- list(transition_up = vecSignificantIDs[vecidxMonotonousUpSort], 
        transition_down = vecSignificantIDs[vecidxMonotonousDownSort], 
        transient_up = vecSignificantIDs[vecidxTransientPeakSort], 
        transient_down = vecSignificantIDs[vecidxTransientValleySort])
}
else {
    vecidxAllSort <- sort(vecMaxTime, decreasing = FALSE, 
        index.return = TRUE)$ix
    vecTrajectoryType <- rep(" ", length(vecidxAllSort))
    lsvecGeneGroups <- list(all = vecSignificantIDs[vecidxAllSort])
}
vecUniqueTP <- unique(dfAnnot$Time)
vecSizeFactors <- computeNormConst(matCountDataProc = get_matCountDataProc(obj = objectImpulseDE2), 
    vecSizeFactorsExternal = get_vecSizeFactors(obj = objectImpulseDE2))
matSizefactors <- matrix(vecSizeFactors, nrow = length(vecSignificantIDs), 
    ncol = dim(get_matCountDataProc(obj = objectImpulseDE2))[2], 
    byrow = TRUE)
matDataNorm <- get_matCountDataProc(obj = objectImpulseDE2)[vecSignificantIDs, 
    ]/matSizefactors
matDataHeat <- do.call(cbind, lapply(vecUniqueTP, function(tp) {
    vecidxCols <- which(dfAnnot$Time %in% tp)
    if (length(vecidxCols) > 1) {
        return(rowMeans(matDataNorm[, vecidxCols], na.rm = TRUE))
    }
    else {
        return(matDataNorm[, vecidxCols])
    }
}))


}

#now you can run your analysis
get_norm_count_table(objectImpulseDE2, strCondition, boolIdentifyTransients, scaQThres)
#your results are in matDataNorm variable
my_norm_counts <-  matDataNorm

You can improve my solution in many ways (e.g. by adding 'return matDataNorm' at the end of function), but I see that you post the issue ~half year ago, so I put here first working solution. Hopefuly it will help.

ADD REPLY

Login before adding your answer.

Traffic: 537 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6