I am having trouble getting pathview to map refseq systematic IDs (locus_tag) to the correct gene symbol. For example, pathview maps YLR174W to IDP1 when it should be IDP2, and YOL126C to MDH3 when it should be MDH2. Any suggestions?
> x[[1]]$plot.data.gene %>% filter(kegg.names %in% c('YLR174W', 'YOL126C'))
   kegg.names labels all.mapped type   x   y width height log2FoldChange mol.col
39    YLR174W   IDP1    YLR174W gene 718 510    46     17       1.161110 #FF0000
41    YLR174W   IDP1    YLR174W gene 718 405    46     17       1.161110 #FF0000
47    YOL126C   MDH3    YOL126C gene 253 349    46     17       1.898154 #FF0000
This is how I am calling pathview
mapKEGGpathway = function(name, res, pathway_id, lfc_thres, padj_thres = .05, species = 'sce'){
  fltr_res = res %>%
    as.data.frame() %>%
    filter(abs(log2FoldChange) > lfc_thres &
           padj < padj_thres) %>%
    select(log2FoldChange)
  pathview(
    gene.data = fltr_res,
    gene.idtype = 'kegg', # per the documentation
    kegg.native = FALSE,
    map.symbol = TRUE,
    expand.node = TRUE,
    pathway.id = pathway_id,
    species = species,
    out.suffix = paste0(name, "_", names(pathways[pathways == pathway_id]))
  )
}
x = map(names(shrunken_res_lists$minus_lys),
  ~mapKEGGpathway(., shrunken_res_lists$minus_lys[[.]], 
     pathway_id = pathways$tca_cycle, lfc_thres = 1))
shrunken_res_list$minus_lys is a list of DESeq2 results tables that look like this:
> head(shrunken_res_lists$minus_lys$EDS1)
log2 fold change (MMSE): aminoAcid_HisMetLeuUra_vs_LysHisMetLeuUra vs genotypeEDS1.aminoAcidHisMetLeuUra 
Wald test p-value: aminoAcid_HisMetLeuUra_vs_LysHisMetLeuUra vs genotypeEDS1.aminoAcidHisMetLeuUra 
DataFrame with 6 rows and 5 columns
       baseMean log2FoldChange     lfcSE      pvalue       padj
      <numeric>      <numeric> <numeric>   <numeric>  <numeric>
Q0020   2717.37      -2.132892  1.267952 0.000346399 0.00453428
Q0045   5007.13      -0.335857  0.534820 0.158333978 0.37525617
Q0050   1229.19      -1.111804  0.877374 0.005074406 0.03406794
Q0055   2514.75      -1.081450  0.843239 0.005293675 0.03513808
Q0060    435.58      -0.987048  0.835864 0.007845219 0.04631870
Q0065   1044.41      -0.709558  0.750734 0.024276562 0.10358936
> sessionInfo()
R version 4.1.2 (2021-11-01)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 20.04.3 LTS
Matrix products: default
BLAS:   /usr/lib/x86_64-linux-gnu/atlas/libblas.so.3.10.3
LAPACK: /usr/lib/x86_64-linux-gnu/atlas/liblapack.so.3.10.3
locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C               LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8     LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                  LC_ADDRESS=C               LC_TELEPHONE=C             LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       
attached base packages:
[1] stats4    stats     graphics  grDevices utils     datasets  methods   base     
other attached packages:
 [1] pathview_1.34.0             ggVennDiagram_1.2.0         here_1.0.1                  pheatmap_1.0.12             DT_0.20                     forcats_0.5.1              
 [7] stringr_1.4.0               dplyr_1.0.7                 purrr_0.3.4                 readr_2.1.1                 tidyr_1.1.4                 tibble_3.1.6               
[13] ggplot2_3.3.5               tidyverse_1.3.1             patchwork_1.1.1             gprofiler2_0.2.1            DESeq2_1.34.0               SummarizedExperiment_1.24.0
[19] Biobase_2.54.0              MatrixGenerics_1.6.0        matrixStats_0.61.0          GenomicRanges_1.46.1        GenomeInfoDb_1.30.0         IRanges_2.28.0             
[25] S4Vectors_0.32.3            BiocGenerics_0.40.0        
loaded via a namespace (and not attached):
  [1] colorspace_2.0-2         rjson_0.2.21             class_7.3-20             ellipsis_0.3.2           rprojroot_2.0.2          XVector_0.34.0          
  [7] fs_1.5.2                 proxy_0.4-26             rstudioapi_0.13          farver_2.1.0             bit64_4.0.5              AnnotationDbi_1.56.2    
 [13] fansi_1.0.2              lubridate_1.8.0          xml2_1.3.3               splines_4.1.2            cachem_1.0.6             geneplotter_1.72.0      
 [19] knitr_1.37               jsonlite_1.7.3           Rsamtools_2.10.0         broom_0.7.11             annotate_1.72.0          dbplyr_2.1.1            
 [25] png_0.1-7                graph_1.72.0             compiler_4.1.2           httr_1.4.2               backports_1.4.1          assertthat_0.2.1        
 [31] Matrix_1.4-0             fastmap_1.1.0            lazyeval_0.2.2           cli_3.1.1                htmltools_0.5.2          tools_4.1.2             
 [37] gtable_0.3.0             glue_1.6.1               GenomeInfoDbData_1.2.7   Rcpp_1.0.8               cellranger_1.1.0         vctrs_0.3.8             
 [43] Biostrings_2.62.0        rtracklayer_1.54.0       xfun_0.29                rvest_1.0.2              lifecycle_1.0.1          restfulr_0.0.13         
 [49] XML_3.99-0.8             org.Hs.eg.db_3.14.0      zlibbioc_1.40.0          scales_1.1.1             org.Sc.sgd.db_3.14.0     hms_1.1.1               
 [55] KEGGgraph_1.54.0         parallel_4.1.2           RColorBrewer_1.1-2       yaml_2.2.1               memoise_2.0.1            stringi_1.7.6           
 [61] RSQLite_2.2.9            genefilter_1.76.0        BiocIO_1.4.0             e1071_1.7-9              BiocParallel_1.28.3      rlang_0.4.12            
 [67] pkgconfig_2.0.3          bitops_1.0-7             evaluate_0.14            lattice_0.20-45          sf_1.0-5                 labeling_0.4.2          
 [73] GenomicAlignments_1.30.0 htmlwidgets_1.5.4        bit_4.0.4                tidyselect_1.1.1         magrittr_2.0.1           R6_2.5.1                
 [79] generics_0.1.1           DelayedArray_0.20.0      DBI_1.1.2                pillar_1.6.4             haven_2.4.3              withr_2.4.3             
 [85] units_0.7-2              survival_3.2-13          KEGGREST_1.34.0          RCurl_1.98-1.5           modelr_0.1.8             crayon_1.4.2            
 [91] KernSmooth_2.23-20       utf8_1.2.2               plotly_4.10.0            RVenn_1.1.0              tzdb_0.2.0               rmarkdown_2.11          
 [97] locfit_1.5-9.4           grid_4.1.2               readxl_1.3.1             data.table_1.14.2        Rgraphviz_2.38.0         blob_1.2.2              
[103] classInt_0.4-3           reprex_2.0.1             digest_0.6.29            xtable_1.8-4             munsell_0.5.0            viridisLite_0.4.0
                    
                
                
For the sake of completeness, that was the tca cycle pathway sce00020. Thank you for checking that -- I did write to kegg for what it is worth.