Help with baySeq paired data analysis - error running 'getLikelihoods'
0
0
Entering edit mode
@sharvari-gujja-6614
Last seen 22 months ago
United States

Hi Tom, I am writing to seek your help in using baySeq for DGE analysis of RNA-Seq data from 9 subjects at two points each. So, there are 18 samples in total with 9 pairs. I am trying to run the code below after looking at some of the answers you provided for previous queries and the documentation at: http://bioconductor.org/packages/release/bioc/vignettes/baySeq/inst/doc/baySeq_generic.pdf

However, I am getting an error in the getLikelihoods function with or without nullProps parameter :

> pairCD <- getLikelihoods(pairCD, pET = 'BIC', nullData = TRUE, cl = cl) #, nullProps=0.5)
**Error in rep(1, nrow(cD@priors$sampled)) : invalid 'times' argument**
> pairCD <- getLikelihoods(pairCD, pET = 'BIC', nullData = TRUE, cl = cl, nullProps=0.5)
**Error in getLikelihoods(pairCD, pET = "BIC", nullData = TRUE, cl = cl,  : 
  unused argument (nullProps = 0.5)**

Below is the code and the sessionInfo.

I really appreciate all the help.

Thanks Sharvari


pairCD <- new("countData", data = list(PooledCounts[,1:9], PooledCounts[,10:18]),
          replicates = as.factor(rep("A",9)),
          groups = list(Agroup = as.factor(rep("A",9))),
          densityFunction = bbDensity
          )

libsizes(pairCD) <- getLibsizes(pairCD)

#fit priors and calculate posterior likelihoods based on our specified distributional model
pairCD <- getPriors(pairCD, samplesize = 10000, cl = cl)
pairCD <- getLikelihoods(pairCD, pET = 'BIC', nullData = TRUE, cl = cl) #, nullProps=0.5)
out <- topCounts(pairCD, group = "Agroup")

sessionInfo( )
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS Monterey 12.2

Matrix products: default
LAPACK: /Library/Frameworks/R.framework/Versions/4.1/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] parallel  stats4    stats     graphics  grDevices utils     datasets  methods  
[9] base     

other attached packages:
 [1] baySeq_2.28.0        abind_1.4-5          GenomicRanges_1.46.1 GenomeInfoDb_1.30.1 
 [5] umap_0.2.8.0         matrixStats_0.62.0   ggplot2_3.3.5        data.table_1.14.2   
 [9] statmod_1.4.36       gageData_2.32.0      gage_2.44.0          pathview_1.34.0     
[13] org.Hs.eg.db_3.14.0  AnnotationDbi_1.56.2 IRanges_2.28.0       S4Vectors_0.32.4    
[17] Biobase_2.54.0       BiocGenerics_0.40.0  BiocManager_1.30.17  stringr_1.4.0       
[21] edgeR_3.36.0         limma_3.50.3        

loaded via a namespace (and not attached):
 [1] bitops_1.0-7           bit64_4.0.5            httr_1.4.2            
 [4] Rgraphviz_2.38.0       tools_4.1.3            utf8_1.2.2            
 [7] R6_2.5.1               DT_0.22                DBI_1.1.2             
[10] colorspace_2.0-3       withr_2.5.0            tidyselect_1.1.2      
[13] bit_4.0.4              compiler_4.1.3         graph_1.72.0          
[16] textshaping_0.3.6      cli_3.3.0              labeling_0.4.2        
[19] KEGGgraph_1.54.0       scales_1.2.0           askpass_1.1           
[22] systemfonts_1.0.4      digest_0.6.29          XVector_0.34.0        
[25] pkgconfig_2.0.3        htmltools_0.5.2        fastmap_1.1.0         
[28] htmlwidgets_1.5.4      rlang_1.0.2            rstudioapi_0.13       
[31] RSQLite_2.2.12         generics_0.1.2         farver_2.1.0          
[34] jsonlite_1.8.0         dplyr_1.0.8            RCurl_1.98-1.6        
[37] magrittr_2.0.3         GO.db_3.14.0           GenomeInfoDbData_1.2.7
[40] Matrix_1.4-1           Rcpp_1.0.8.3           munsell_0.5.0         
[43] fansi_1.0.3            reticulate_1.24        lifecycle_1.0.1       
[46] stringi_1.7.6          zlibbioc_1.40.0        grid_4.1.3            
[49] blob_1.2.3             crayon_1.5.1           lattice_0.20-45       
[52] Biostrings_2.62.0      splines_4.1.3          KEGGREST_1.34.0       
[55] locfit_1.5-9.5         pillar_1.7.0           XML_3.99-0.9          
[58] glue_1.6.2             png_0.1-7              vctrs_0.4.1           
[61] gtable_0.3.0           openssl_2.0.0          purrr_0.3.4           
[64] assertthat_0.2.1       cachem_1.0.6           RSpectra_0.16-0       
[67] ragg_1.2.2             tibble_3.1.6           memoise_2.0.1         
[70] ellipsis_0.3.2        
>
baySeq • 623 views
ADD COMMENT
0
Entering edit mode

Hi Tom,

The code seems to be running now. Can you please let me know if the implementation is correct.

Thanks in advance. Sharvari

pairCD <- new("countData", data = list(PooledCounts[,1:9], PooledCounts[,10:18]),
          replicates = as.factor(rep("A",9)),
          groups = list(Agroup = as.factor(rep("A",9))),
          densityFunction = bbDensity
          )

libsizes(pairCD) <- getLibsizes(pairCD)

#fit priors and calculate posterior likelihoods based on our specified distributional model
pairCD <- getPriors(pairCD, samplesize = 10^5, cl = cl)
pairCD <- getLikelihoods(pairCD, pET = 'BIC', nullData = TRUE, cl = cl) #, nullProps=0.5)
out <- topCounts(pairCD, group = "Agroup")
ADD REPLY

Login before adding your answer.

Traffic: 802 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6