Entering edit mode
Thomas Eder
•
0
@thomas-eder-20148
Last seen 5.7 years ago
Hi,
I want to try out MMDiff2 for simulated data on one human chromosome (chr19) with around 1000 peaks in both samples, (rather broad peaks like histon marks)
library(MMDiff2)
ExperimentData <- list(genome='BSgenome.Mmusculus.UCSC.mm10',dataDir='.',sampleSheet='mmdiff2.csv')
MetaData <- list('ExpData' = ExperimentData)
MMD <- DBAmmd(MetaData
library('DiffBind')
DBA <- dba(sampleSheet='mmdiff2.csv', minOverlap=3
Peaks <- dba.peakset(DBA, bRetrieve = TRUE)
MMD <- setRegions(MMD,Peaks)
MMD <- getPeakReads(MMD, pairedEnd = FALSE, run.parallel = FALSE)
MMD <- estimateFragmentCenters(MMD)
When running
MMD <- compDists(MMD)
, i get:
checking parameters...
estimating sigma...
pre-computing Kernel matrix...
computing 6 pair-wise distances...
computing distances for S11 vs S12
|=== to 23%
Error: cannot allocate vector of size 40.4 Gb
Execution halted
Warning message:
system call failed: Cannot allocate memory
Which indicates that the tool / R run out of memory, I am using a machine with 128GB memory this should be more than sufficient for comparing data of one chromosome. Is there a way to split this analysis step? or store data on the hard-drive?
sessionInfo()
R version 3.5.2 (2018-12-20)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 18.04.2 LTS
Matrix products: default
BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.7.1
LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.7.1
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=de_AT.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=de_AT.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=de_AT.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=de_AT.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats4 parallel stats graphics grDevices utils datasets
[8] methods base
other attached packages:
[1] MMDiff2_1.10.0 Biobase_2.42.0 Rsamtools_1.34.0
[4] Biostrings_2.50.2 XVector_0.22.0 GenomicRanges_1.34.0
[7] GenomeInfoDb_1.18.1 IRanges_2.16.0 S4Vectors_0.20.1
[10] BiocGenerics_0.28.0
loaded via a namespace (and not attached):
[1] Rcpp_1.0.0 later_0.7.5
[3] bindr_0.1.1 compiler_3.5.2
[5] pillar_1.3.1 RColorBrewer_1.1-2
[7] plyr_1.8.4 bitops_1.0-6
[9] tools_3.5.2 zlibbioc_1.28.0
[11] digest_0.6.18 tibble_2.0.1
[13] gtable_0.2.0 BSgenome_1.50.0
[15] lattice_0.20-38 pkgconfig_2.0.2
[17] rlang_0.3.1 Matrix_1.2-15
[19] shiny_1.2.0 DelayedArray_0.8.0
[21] bindrcpp_0.2.2 GenomeInfoDbData_1.2.0
[23] rtracklayer_1.42.1 dplyr_0.7.8
[25] locfit_1.5-9.1 tidyselect_0.2.5
[27] grid_3.5.2 glue_1.3.0
[29] R6_2.3.0 XML_3.98-1.16
[31] BiocParallel_1.16.5 purrr_0.2.5
[33] magrittr_1.5 ggplot2_3.1.0
[35] promises_1.0.1 htmltools_0.3.6
[37] scales_1.0.0 matrixStats_0.54.0
[39] GenomicAlignments_1.18.1 assertthat_0.2.0
[41] SummarizedExperiment_1.12.0 xtable_1.8-3
[43] mime_0.6 colorspace_1.4-0
[45] httpuv_1.4.5.1 RCurl_1.95-4.11
[47] lazyeval_0.2.1 munsell_0.5.0
[49] crayon_1.3.4
running against a similar issue. Have you found any solutions?