Entering edit mode
Hi, I am interested in the interaction effect using a grouping variable. For example, using a classic DESeq2 example, is the difference in conditions A vs B differs by genotypes I vs II?
dds <- makeExampleDESeqDataSet(n=100,m=18)
dds$genotype <- factor(rep(rep(c("I","II","III"),each=3),2))
dds$group <- factor(paste0(dds$genotype, "_", dds$condition))
design(dds) <- ~ group
dds <- DESeq(dds)
resultsNames(dds)
# Comparison of interest: (I_A vs I_B) vs (II_A vs_B)
# Code below doesn't work, but is there a solution for this?
results(dds, contrast=list(c("group", "I_A", "I_B"),
c("group", "II_A", "II_B")))
sessionInfo( )
R version 4.1.2 (2021-11-01)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 18.04.6 LTS
Matrix products: default
BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.7.1
LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.7.1
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8 LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats4 stats graphics grDevices utils datasets methods base
other attached packages:
[1] biomaRt_2.50.3 ggplot2_3.3.6 edgeR_3.36.0 DESeq2_1.34.0
[5] SummarizedExperiment_1.24.0 Biobase_2.54.0 MatrixGenerics_1.6.0 matrixStats_0.62.0
[9] GenomicRanges_1.46.1 GenomeInfoDb_1.30.1 IRanges_2.28.0 S4Vectors_0.32.4
[13] BiocGenerics_0.40.0 limma_3.50.3 stringr_1.4.1 readxl_1.4.1
[17] tximport_1.22.0 plyr_1.8.7
loaded via a namespace (and not attached):
[1] bitops_1.0-7 bit64_4.0.5 filelock_1.0.2 RColorBrewer_1.1-3 progress_1.2.2
[6] httr_1.4.4 tools_4.1.2 utf8_1.2.2 R6_2.5.1 DBI_1.1.3
[11] colorspace_2.0-3 withr_2.5.0 tidyselect_1.1.2 prettyunits_1.1.1 bit_4.0.4
[16] curl_4.3.2 compiler_4.1.2 textshaping_0.3.6 cli_3.4.1 xml2_1.3.3
[21] DelayedArray_0.20.0 labeling_0.4.2 scales_1.2.1 genefilter_1.76.0 rappdirs_0.3.3
[26] systemfonts_1.0.4 digest_0.6.29 rmarkdown_2.16 XVector_0.34.0 pkgconfig_2.0.3
[31] htmltools_0.5.3 dbplyr_2.2.1 fastmap_1.1.0 rlang_1.0.6 rstudioapi_0.14
[36] RSQLite_2.2.18 farver_2.1.1 generics_0.1.3 BiocParallel_1.28.3 dplyr_1.0.10
[41] RCurl_1.98-1.9 magrittr_2.0.3 GenomeInfoDbData_1.2.7 Matrix_1.5-1 Rcpp_1.0.9
[46] munsell_0.5.0 fansi_1.0.3 lifecycle_1.0.2 stringi_1.7.8 yaml_2.3.5
[51] zlibbioc_1.40.0 BiocFileCache_2.2.1 grid_4.1.2 blob_1.2.3 parallel_4.1.2
[56] crayon_1.5.2 lattice_0.20-45 Biostrings_2.62.0 splines_4.1.2 annotate_1.72.0
[61] hms_1.1.2 KEGGREST_1.34.0 locfit_1.5-9.6 knitr_1.40 pillar_1.8.1
[66] geneplotter_1.72.0 XML_3.99-0.11 glue_1.6.2 evaluate_0.16 png_0.1-7
[71] vctrs_0.4.2 cellranger_1.1.0 gtable_0.3.1 purrr_0.3.4 assertthat_0.2.1
[76] cachem_1.0.6 xfun_0.33 xtable_1.8-4 ragg_1.2.3 survival_3.4-0
[81] tibble_3.1.8 AnnotationDbi_1.56.2 memoise_2.0.1 statmod_1.4.37 ellipsis_0.3.2
Thank you!