Hi, guys. I wanted to make ceRNA network using gdcCEAnalysis() from GDCRNATools, however I encountered a
Step 1/3: Hypergenometric test done !
Error in cor.test.default(lncDa, mirDa, alternative = "less") : 
  not enough finite observations
error. I have checked if I have only mature miRNA, done voom transformation, provided ENSEMBL gene names like specified in function. Have anyone encountered this issue?
library(GDCRNATools)
samples <- c('TCGA-2F-A9KO-01', 'TCGA-2F-A9KP-01', 
             'TCGA-2F-A9KQ-01', 'TCGA-2F-A9KR-01', 
             'TCGA-2F-A9KT-01', 'TCGA-2F-A9KW-01')
num_rows <- length(demiRNAs)
num_columns <- length(samples)
mir.expr <- as.data.frame(matrix(runif(num_rows * num_columns, min = -1, max = 1), nrow = num_rows, ncol = num_columns))
rownames(mir.expr) <- demiRNA_names
colnames(mir.expr) <- samples
num_rows <- length(de_proteing_coding_names + length(delncRNA_names)
num_columns <- length(samples)
# Create a random dataframe with specified dimensions
rna.expr <- as.data.frame(matrix(runif(num_rows * num_columns, min = -1, max = 1), nrow = num_rows, ncol = num_columns))
rownames(expression) <- c(de_proteing_coding_names, delncRNA_names)
colnames(expression) <- samples
ceOutput <- gdcCEAnalysis(lnc       = delncRNA_names, 
                          pc          = de_proteing_coding_names, 
                          deMIR = rownames(demiRNA_names),
                          lnc.targets = 'starBase', 
                          pc.targets  = 'starBase', 
                          rna.expr    = rna.expr, 
                          mir.expr    = mir.expr)
sessionInfo( ) R version 4.3.1 (2023-06-16) Platform: x86_64-apple-darwin20 (64-bit) Running under: macOS Sonoma 14.2.1
Matrix products: default BLAS: /System/Library/Frameworks/Accelerate.framework/Versions/A/Frameworks/vecLib.framework/Versions/A/libBLAS.dylib LAPACK: /Library/Frameworks/R.framework/Versions/4.3-x86_64/Resources/lib/libRlapack.dylib; LAPACK version 3.11.0
locale: [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
time zone: Europe/Warsaw tzcode source: internal
attached base packages:
[1] stats4    stats     graphics  grDevices utils     datasets  methods
[8] base
other attached packages:
 [1] GDCRNATools_1.22.0          DESeq2_1.42.0
 [3] SummarizedExperiment_1.32.0 Biobase_2.62.0
 [5] MatrixGenerics_1.14.0       matrixStats_1.2.0
 [7] GenomicRanges_1.54.1        GenomeInfoDb_1.38.5
 [9] IRanges_2.36.0              S4Vectors_0.40.2
[11] BiocGenerics_0.48.1         magrittr_2.0.3
[13] miRBaseConverter_1.26.0     biomaRt_2.58.0
loaded via a namespace (and not attached):
  [1] splines_4.3.1                 later_1.3.2
  [3] pbdZMQ_0.3-11                 bitops_1.0-7
  [5] ggplotify_0.1.2               filelock_1.0.3
  [7] tibble_3.2.1                  polyclip_1.10-6
  [9] graph_1.80.0                  XML_3.99-0.16
 [11] lifecycle_1.0.4               rstatix_0.7.2
 [13] edgeR_4.0.12                  doParallel_1.0.17
 [15] lattice_0.22-5                MASS_7.3-60.0.1
 [17] backports_1.4.1               limma_3.58.1
 [19] yaml_2.3.8                    httpuv_1.6.13
 [21] cowplot_1.1.2                 DBI_1.2.1
 [23] RColorBrewer_1.1-3            abind_1.4-5
 [25] zlibbioc_1.48.0               purrr_1.0.2
 [27] ggraph_2.1.0                  RCurl_1.98-1.14
 [29] yulab.utils_0.1.3             tweenr_2.0.2
 [31] rappdirs_0.3.3                circlize_0.4.15
 [33] GenomeInfoDbData_1.2.11       KMsurv_0.1-5
 [35] enrichplot_1.22.0             ggrepel_0.9.5
 [37] tidytree_0.4.6                codetools_0.2-19
 [39] DelayedArray_0.28.0           DOSE_3.28.2
 [41] DT_0.31                       xml2_1.3.6
 [43] ggforce_0.4.1                 tidyselect_1.2.0
 [45] shape_1.4.6                   aplot_0.2.2
 [47] farver_2.1.1                  viridis_0.6.4
 [49] pathview_1.42.0               BiocFileCache_2.10.1
 [51] jsonlite_1.8.8                GetoptLong_1.0.5
 [53] ellipsis_0.3.2                tidygraph_1.3.0
 [55] survival_3.5-7                iterators_1.0.14
 [57] foreach_1.5.2                 tools_4.3.1
 [59] progress_1.2.3                treeio_1.26.0
 [61] Rcpp_1.0.12                   glue_1.7.0
 [63] GenomicDataCommons_1.26.0     gridExtra_2.3
 [65] SparseArray_1.2.3             xfun_0.41
 [67] qvalue_2.34.0                 dplyr_1.1.4
 [69] withr_3.0.0                   BiocManager_1.30.22
 [71] fastmap_1.1.1                 fansi_1.0.6
 [73] caTools_1.18.2                digest_0.6.34
 [75] R6_2.5.1                      mime_0.12
 [77] gridGraphics_0.5-1            colorspace_2.1-0
 [79] GO.db_3.18.0                  gtools_3.9.5
 [81] RSQLite_2.3.5                 utf8_1.2.4
 [83] tidyr_1.3.0                   generics_0.1.3
 [85] data.table_1.14.10            prettyunits_1.2.0
 [87] graphlayouts_1.1.0            httr_1.4.7
 [89] htmlwidgets_1.6.4             S4Arrays_1.2.0
 [91] scatterpie_0.2.1              pkgconfig_2.0.3
 [93] gtable_0.3.4                  blob_1.2.4
 [95] ComplexHeatmap_2.18.0         XVector_0.42.0
 [97] survMisc_0.5.6                clusterProfiler_4.10.0
 [99] shadowtext_0.1.3              htmltools_0.5.7
[101] carData_3.0-5                 fgsea_1.28.0
[103] clue_0.3-65                   scales_1.3.0
[105] png_0.1-8                     ggfun_0.1.4
[107] knitr_1.45                    km.ci_0.5-6
[109] rstudioapi_0.15.0             tzdb_0.4.0
[111] reshape2_1.4.4                rjson_0.2.21
[113] nlme_3.1-164                  curl_5.2.0
[115] org.Hs.eg.db_3.18.0           zoo_1.8-12
[117] cachem_1.0.8                  GlobalOptions_0.1.2
[119] stringr_1.5.1                 KernSmooth_2.23-22
[121] BiocVersion_3.18.1            parallel_4.3.1
[123] HDO.db_0.99.1                 AnnotationDbi_1.64.1
[125] pillar_1.9.0                  grid_4.3.1
[127] vctrs_0.6.5                   gplots_3.1.3
[129] ggpubr_0.6.0                  promises_1.2.1
[131] car_3.1-2                     dbplyr_2.4.0
[133] xtable_1.8-4                  cluster_2.1.6
[135] Rgraphviz_2.46.0              KEGGgraph_1.62.0
[137] readr_2.1.5                   cli_3.6.2
[139] locfit_1.5-9.8                compiler_4.3.1
[141] rlang_1.1.3                   crayon_1.5.2
[143] ggsignif_0.6.4                survminer_0.4.9
[145] plyr_1.8.9                    fs_1.6.3
[147] stringi_1.8.3                 viridisLite_0.4.2
[149] BiocParallel_1.36.0           munsell_0.5.0
[151] Biostrings_2.70.1             lazyeval_0.2.2
[153] GOSemSim_2.28.1               Matrix_1.6-5
[155] hms_1.1.3                     patchwork_1.2.0
[157] bit64_4.0.5                   ggplot2_3.4.4
[159] KEGGREST_1.42.0               statmod_1.5.0
[161] shiny_1.8.0                   interactiveDisplayBase_1.40.0
[163] AnnotationHub_3.10.0          broom_1.0.5
[165] igraph_1.6.0                  memoise_2.0.1
[167] ggtree_3.10.0                 fastmatch_1.1-4
[169] bit_4.0.5                     ape_5.7-1
[171] gson_0.1.0
```

This question was also asked on biostars: https://www.biostars.org/p/9585713/
Please mind that posting the same question to multiple sites can be perceived as bad etiquette, because efforts may be made to address a problem that has already been solved elsewhere in the meantime.
The helpful thing to do if you do decide to post on multiple forums is to add a link to the other forum posts on each post so people will look at the other posts before investing their effort.