The Risa package for reading ISA files is listed as active for 3.19 and in development for 3.20, however it appears missing from the repository.
I managed to install it from source from the archive version of 3.18, so the old code works with 3.19 and R 4.4.1
On the download stats page, there is a note:
Download stats for software package Risa Data as of Wed. 26 Jun 2024 Package Risa is not in the current release of Bioconductor. It was last seen in 3.18.
The PDF link: https://www.bioconductor.org/packages/release/bioc/manuals/Risa/man/Risa.pdf
Results in:
Page Not Found
The page you were looking for was not found.
Risa should be included in Bioconductor and be able to be installed
sessionInfo()
R version 4.4.1 (2024-06-14)
Platform: aarch64-apple-darwin20
Running under: macOS Sonoma 14.5
Matrix products: default
BLAS: /System/Library/Frameworks/Accelerate.framework/Versions/A/Frameworks/vecLib.framework/Versions/A/libBLAS.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/lib/libRlapack.dylib; LAPACK version 3.12.0
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
time zone: America/Indiana/Indianapolis
tzcode source: internal
attached base packages:
[1] stats4 stats graphics grDevices utils datasets methods base
other attached packages:
[1] knitrProgressBar_1.1.0 fpCompare_0.2.4 pander_0.6.5 xcms_4.2.2
[5] Spectra_1.14.1 BiocParallel_1.38.0 MSnbase_2.30.1 ProtGenerics_1.36.0
[9] S4Vectors_0.42.0 mzR_2.38.0 Rcpp_1.0.12 Biobase_2.64.0
[13] BiocGenerics_0.50.0 lubridate_1.9.3 forcats_1.0.0 stringr_1.5.1
[17] dplyr_1.1.4 purrr_1.0.2 readr_2.1.5 tidyr_1.3.1
[21] tibble_3.2.1 ggplot2_3.5.1 tidyverse_2.0.0
loaded via a namespace (and not attached):
[1] DBI_1.2.3 rlang_1.1.4 magrittr_2.0.3
[4] clue_0.3-65 MassSpecWavelet_1.70.0 matrixStats_1.3.0
[7] compiler_4.4.1 vctrs_0.6.5 reshape2_1.4.4
[10] pkgconfig_2.0.3 MetaboCoreUtils_1.12.0 crayon_1.5.3
[13] fastmap_1.2.0 XVector_0.44.0 labeling_0.4.3
[16] utf8_1.2.4 rmarkdown_2.27 tzdb_0.4.0
[19] UCSC.utils_1.0.0 preprocessCore_1.66.0 bit_4.0.5
[22] xfun_0.45 MultiAssayExperiment_1.30.2 zlibbioc_1.50.0
[25] GenomeInfoDb_1.40.1 jsonlite_1.8.8 progress_1.2.3
[28] DelayedArray_0.30.1 prettyunits_1.2.0 parallel_4.4.1
[31] cluster_2.1.6 R6_2.5.1 RColorBrewer_1.1-3
[34] stringi_1.8.4 limma_3.60.3 GenomicRanges_1.56.1
[37] iterators_1.0.14 bookdown_0.39 SummarizedExperiment_1.34.0
[40] knitr_1.47 IRanges_2.38.0 Matrix_1.7-0
[43] igraph_2.0.3 timechange_0.3.0 tidyselect_1.2.1
[46] rstudioapi_0.16.0 abind_1.4-5 yaml_2.3.8
[49] doParallel_1.0.17 codetools_0.2-20 affy_1.82.0
[52] lattice_0.22-6 plyr_1.8.9 withr_3.0.0
[55] evaluate_0.24.0 pillar_1.9.0 affyio_1.74.0
[58] BiocManager_1.30.23 MatrixGenerics_1.16.0 foreach_1.5.2
[61] MALDIquant_1.22.2 ncdf4_1.22 generics_0.1.3
[64] vroom_1.6.5 hms_1.1.3 munsell_0.5.1
[67] scales_1.3.0 MsExperiment_1.6.0 glue_1.7.0
[70] MsFeatures_1.12.0 lazyeval_0.2.2 tools_4.4.1
[73] mzID_1.42.0 QFeatures_1.14.1 vsn_3.72.0
[76] fs_1.6.4 XML_3.99-0.17 grid_4.4.1
[79] impute_1.78.0 MsCoreUtils_1.16.0 colorspace_2.1-0
[82] GenomeInfoDbData_1.2.12 PSMatch_1.8.0 cli_3.6.3
[85] fansi_1.0.6 viridisLite_0.4.2 S4Arrays_1.4.1
[88] AnnotationFilter_1.28.0 pcaMethods_1.96.0 gtable_0.3.5
[91] R.methodsS3_1.8.2 digest_0.6.36 SparseArray_1.4.8
[94] farver_2.1.2 R.oo_1.26.0 htmltools_0.5.8.1
[97] lifecycle_1.0.4 httr_1.4.7 statmod_1.5.0
[100] bit64_4.0.5 MASS_7.3-61