Hi, I'm trying to do two-factor DEG analysis using DESeq2.
colData(dds) 
      condition    batch    infection  metabolite  sizeFactor
       <factor> <factor>     <factor>   <factor>  <numeric>
Mock1      Mock   first  Not-Infected        Non   0.904435
Mock2      Mock   first  Not-Infected        Non   1.060912
Mock3      Mock   second Not-Infected        Non   0.864510
Mock4      Mock   third  Not-Infected        Non   1.064498
L1         L    third  Not-Infected        L   1.137483
...         ...      ...          ...        ...        ...
V4     Virus       third     Infected        Non   1.104777
LV1    L+Virus    first     Infected        L   0.862166
LV2    L+Virus    first     Infected        L   0.897168
LV4    L+Virus    third     Infected        L    1.142766
LV5    L+Virus    third     Infected        L   1.160191
What really matters are infection and  metabolite columns and I ran the following code.
dds_fin<-DESeqDataSetFromMatrix(countdata_fin,colData = metadata_fin,design = ~ infection + metabolite + infection:metabolite)
To analyze the main effect of infection, which means the effect of infection in non-treated group, I ran the following code.
res_infection<- results(dds_fin,contrast = c("infection","Infected","Not-Infected"))
The results said there is only one gene (GNAT1) that are differentially expressed with statistical significance and high log2FoldChange value (between mock and V group as far as I understand correctly). My question is, if I see the normalized expression of GNAT1 gene like the image I posted, there is almost no difference between Mock and Virus-infected(V) group. I'm really confused with this result. 
And another question is about contrast. What I really want to know is the effect of infection regardless of what is treated (control or metabolite L). I saw deseq2: coding 2x2 design , where situation seems similar. So if I want to extract the pure infection effect, do I need to do numerical contrast?
I appreciate any guidance or advice. Thanks a lot!
JY
