I have successfully used Circos to plot copy number data, but I have no experience with OmicsCircos and similars.
If you can accept a "linear" plot instead of circular you could take a look to karyoploteR.
First create the sample data (with just two samples) and a few alterations.
library(karyoploteR)
gains.samp1 <- toGRanges(data.frame(chr=c("chr1", "chr2", "chr2"), start=c(1, 1, 140e6), end=c(40e6, 5e6, 180e6)))
losses.samp1 <- toGRanges(data.frame(chr=c("chr1", "chr3", "chr3"), start=c(140e6, 1, 20e6), end=c(200e6, 5e6, 45e6)))
gains.samp2 <- toGRanges(data.frame(chr=c("chr1", "chr2", "chr2"), start=c(1, 10e6, 160e6), end=c(20e6, 15e6, 210e6)))
losses.samp2 <- toGRanges(data.frame(chr=c("chr2", "chr2", "chr3"), start=c(1, 120e6, 1e6), end=c(9e6, 140e6, 50e6)))
Then use plotKaryotype to create the ideogram and kpPlotRegions to add the copynumber alterations
kp <- plotKaryotype(chromosomes=c("chr1", "chr2", "chr3"))
kpPlotRegions(kp, data=toGRanges(gains.samp1), col="red")
kpPlotRegions(kp, data=toGRanges(losses.samp1), col="green")
Or you can plot the 2 samples in different "tracks" using r0 and r1 as in Circos and add a histogram like plot to show how frequent is the gain or loss of a certain region
kp <- plotKaryotype(chromosomes=c("chr1", "chr2", "chr3"), plot.type = 2)
kpAddLabels(kp, "Sample1", r0=0, r1=0.5, cex=0.5)
kpPlotRegions(kp, data=gains.samp1, col="#FF6666", r0=0, r1=0.5)
kpPlotRegions(kp, data=losses.samp1, col="#66FF66", r0=0, r1=0.5)
kpAddLabels(kp, "Sample2", r0=0.5, r1=1, cex=0.5)
kpPlotRegions(kp, data=gains.samp2, col="#FF6666", r0=0.5, r1=1)
kpPlotRegions(kp, data=losses.samp2, col="#66FF66", r0=0.5, r1=1)
kpAddLabels(kp, "All Samples", cex=0.5, data.panel=2)
kpPlotCoverage(kp, data=c(gains.samp1, gains.samp2), col="#FF6666AA", data.panel = 2, r1=0, r0=0.5)
kpPlotCoverage(kp, data=c(losses.samp1, losses.samp2), col="#66FF66AA", data.panel = 2, r0=0.5, r1=0.9)