opposite signs in limma
1
0
Entering edit mode
Jihoon Kim ▴ 10
@jihoon-kim-1367
Last seen 11.4 years ago
Dear Dr.Smyth, I'm struggling with limma to apply it to two-group microarray data. I thought ebayes() in limma shrinks the variance but not the "sign" of the original t-statistic. However, example code resulted in opposite signs of the moderated T statistic and the mean difference in the gene 1(or the row 1). I tried to follow example code in limma. What seems to be problem here? Thank you in advance. Best, Jihoon Kim -------------------------------------------------------------- library(limma) exprVec <- c( 1.5522, 1.6881, 1.0798, 1.3877, 0.8566, 1.4138, 1.5729 , 1.3380, 2.2301, 1.8566, 2.0400 , 1.6191, -1.6955, -1.2777, -1.4938, -1.7326, -1.5530, -1.7169, -0.1812, 0.0399, 0.0413, -0.3797, -0.4582, -0.6490, -0.3439, -0.2067, -0.0792, 0.0549, -0.1200, 0.4584, -0.2357, -0.5873, -0.0446, -0.1868, 0.2710, -0.2091, -0.5146, -0.1384, -0.1525 , 0.0089, 0.5896, 0.2688, 0.2017, 0.1631, -0.1724, -0.5886, -0.1346, -0.3309 ) Mat <- matrix( exprVec, nrow=4, ncol=12, byrow=TRUE) design.eb <- cbind( time1=c( rep(1, 6), rep(0, 6)), time2=c( rep(0, 6), rep(1, 6)) ) fit <- lm.series(Mat, design=design.eb) eb <- ebayes(fit) modT <- eb$t[,1] meanDiff <- rep(0, 4) for(i in 1:3) { meanDiff[i] <- mean( Mat[i, 1:6] ) - mean( Mat[i, 7:12] ) } cbind(modT, meanDiff) plot(1:12, Mat[1,], type="b")
Microarray limma Microarray limma • 982 views
ADD COMMENT
0
Entering edit mode
@gordon-smyth
Last seen 8 hours ago
WEHI, Melbourne, Australia
At 05:16 AM 3/08/2005, Jihoon Kim wrote: >Dear Dr.Smyth, > >I'm struggling with limma to apply it to two-group microarray data. >I thought ebayes() in limma shrinks the variance but not the "sign" >of the original t-statistic. It does. > However, example code resulted in opposite >signs of the moderated T statistic and the mean difference >in the gene 1(or the row 1). > >I tried to follow example code in limma. >What seems to be problem here? Your meanDiff() is not equivalent to fitting a linear model. All your linear model does here is to compute group means. Suggest you talk to a statistician in your dept. Gordon >Thank you in advance. > > >Best, > > >Jihoon Kim > > >-------------------------------------------------------------- > > >library(limma) > > >exprVec <- c( > 1.5522, 1.6881, 1.0798, 1.3877, 0.8566, 1.4138, > 1.5729 , 1.3380, 2.2301, 1.8566, 2.0400 , 1.6191, > -1.6955, -1.2777, -1.4938, -1.7326, -1.5530, -1.7169, > -0.1812, 0.0399, 0.0413, -0.3797, -0.4582, -0.6490, > -0.3439, -0.2067, -0.0792, 0.0549, -0.1200, 0.4584, > -0.2357, -0.5873, -0.0446, -0.1868, 0.2710, -0.2091, > -0.5146, -0.1384, -0.1525 , 0.0089, 0.5896, 0.2688, > 0.2017, 0.1631, -0.1724, -0.5886, -0.1346, -0.3309 ) >Mat <- matrix( exprVec, nrow=4, ncol=12, byrow=TRUE) >design.eb <- cbind( time1=c( rep(1, 6), rep(0, 6)), > time2=c( rep(0, 6), rep(1, 6)) ) >fit <- lm.series(Mat, design=design.eb) >eb <- ebayes(fit) >modT <- eb$t[,1] > >meanDiff <- rep(0, 4) >for(i in 1:3) { > meanDiff[i] <- mean( Mat[i, 1:6] ) - mean( Mat[i, 7:12] ) >} > > >cbind(modT, meanDiff) > >plot(1:12, Mat[1,], type="b")
ADD COMMENT

Login before adding your answer.

Traffic: 1337 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6