Hello
I usually analyse data with DEG I've got, and it is my first time using GAGE to analyse my data.
I took the output of DESeq2 (log2FoldChange) as input, and made a list of keggID-Geneset since there is no appropriate dataset in package suitable for my data.
I didn't get any significant result (q-value<0.05). It seems so strange, since I can get a several significant KEGG pathway while using DEGs. I wonder if my codes are wrong.

#The codes are as follows library(gage) data <- read.table("config.FOfc.txt") data2 <- read.delim("config.kegggs.txt",header = FALSE,sep = "\t",row.names=1) data3 <- as.list(as.data.frame(t(data2))) for (i in names(data3)){data3[[i]] = as.character(data3[[i]])} for (i in names(data3)){data3[[i]] = unlist(strsplit(as.character(data3[[i]]), ' '))} FO.kegg.p <- gage(data, gsets=data3,ref = NULL, samp = NULL, same.dir=F,rank.test=TRUE) write.table(FO.kegg.p$greater,file="result-FO.kegg.p.greater.xls",sep="\t") q()#The input are shown below
> head(data)
lfc
HGL_N10009473 0.22861276
HGL_H00000302606-6 0.23119858
HGL_H00000368591 0.04589421
HGL_H00000355443-1 NA
HGL_H00000294923 -0.19674764
HGL_H00000326301-12 NA
>head(data3)
$`ko04724 Glutamatergic synapse`
[1] "HGL_H00000312262" "HGL_H00000263088" "HGL_H00000342793"
[4] "HGL_H00000317379" "HGL_H00000310447" "HGL_H00000307900-6"
[7] "HGL_H00000307900-3" "HGL_H00000284384" "HGL_H00000353362"
[10] "HGL_H00000359719" "HGL_H00000309591" "HGL_H00000360021-1"
[13] "HGL_H00000360021-2" "HGL_H00000380878" "HGL_H00000378306"
[16] "HGL_H00000378323" "HGL_H00000263025-2" "HGL_H00000381803"
[19] "HGL_H00000262493-1" "HGL_H00000416870-1" "HGL_H00000377503-2"
[22] "HGL_H00000351635" "HGL_N10016182" "HGL_H00000355557"
[25] "HGL_H00000371594" "HGL_H00000375783" "HGL_H00000248564"
[28] "HGL_H00000248150" "HGL_H00000388777" "HGL_H00000300406"
[31] "HGL_H00000282753" "HGL_H00000306138" "HGL_H00000378492"