DEseq2 complex design - 2 factors with more than 2 levels
1
0
Entering edit mode
lessismore ▴ 20
@lessismore
Last seen 2.4 years ago
Italy

Hi all!

Using DEseq2 (v 1.30.0) I try to analyze a "complex" data set with 2 factors (A and B) harboring different levels. Factor A (named hereafter "line") has two levels (infected/non-infected) and factor 2 (named hereafter "group") has 4 (non-infected, mono-infected with 1, mono-infected with 2 and bi-infected with 1 and 2 at the same time). According to phenotype data, what drives my phenotype is A:B interaction. Thereby, I try to find the genes that are explained by interaction A:B. I guess that the trick is to use contrasts methods, but I am positively lost between all the lists of genes to find the one I am interested in (if there is only one), in addition to the fact that DEseq2 asks for a "reference" level which does not make really sense in an interaction model. Do you have any clues to help me? When I use the #resultsNames function, where should I look? What would be the correct coding for contrasts?

Thanks a lot for your help. -Vincent

Code should be placed in three backticks as shown below


cts <- read.delim("Pupalcountstotal.txt", header=TRUE, row.names="GeneID")
coldata <- read.delim("design.txt", header=TRUE) #24 obs

coldata$group <- as.factor(coldata$group)
coldata$line <- as.factor(coldata$line)


dds <- DESeqDataSetFromMatrix(countData = cts,
                              colData = coldata,
                              design= ~ group+line+group:line)

#remove <100 counts total per transcript
dds <- dds[ rowSums(counts(dds)) > 100, ] #reste 13169

#relevel factors
dds$group <- relevel(dds$group, ref = "GF")
dds$line <- relevel(dds$line, ref = "wolb")


dds <- DESeq(dds)
resultsNames(dds) 

[1] "Intercept"        "group_AP_vs_GF"   "group_BI_vs_GF"   "group_LP_vs_GF"   "line_tet_vs_wolb" "groupAP.linetet"  "groupBI.linetet" 
[8] "groupLP.linetet" 

sessionInfo( )
R version 4.0.3 (2020-10-10)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS Catalina 10.15.7

Matrix products: default
BLAS:   /System/Library/Frameworks/Accelerate.framework/Versions/A/Frameworks/vecLib.framework/Versions/A/libBLAS.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRlapack.dylib

Random number generation:
 RNG:     Mersenne-Twister 
 Normal:  Inversion 
 Sample:  Rounding 

locale:
[1] fr_FR.UTF-8/fr_FR.UTF-8/fr_FR.UTF-8/C/fr_FR.UTF-8/fr_FR.UTF-8

attached base packages:
 [1] parallel  stats4    grid      stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] SARTools_1.7.3              kableExtra_1.3.1            emmeans_1.5.3               devtools_2.3.2              usethis_2.0.0              
 [6] edgeR_3.32.0                limma_3.46.0                DESeq2_1.30.0               SummarizedExperiment_1.20.0 Biobase_2.50.0             
[11] MatrixGenerics_1.2.0        matrixStats_0.57.0          GenomicRanges_1.42.0        GenomeInfoDb_1.26.2         IRanges_2.24.1             
[16] S4Vectors_0.28.1            BiocGenerics_0.36.0         gprofiler2_0.2.0            UpSetR_1.4.0                coxme_2.2-16               
[21] bdsmatrix_1.3-4             scales_1.1.1                viridis_0.5.1               viridisLite_0.3.0           car_3.0-10                 
[26] carData_3.0-4               GGally_2.1.0                survival_3.2-7              lme4_1.1-26                 Matrix_1.2-18              
[31] gplots_3.1.1                knitr_1.30                  reshape2_1.4.4              gridExtra_2.3               stringr_1.4.0              
[36] plyr_1.8.6                  ggplot2_3.3.3               MASS_7.3-53                

loaded via a namespace (and not attached):
  [1] readxl_1.3.1           lazyeval_0.2.2         splines_4.0.3          BiocParallel_1.24.1    TH.data_1.0-10         digest_0.6.27         
  [7] htmltools_0.5.0        fansi_0.4.1            magrittr_2.0.1         memoise_1.1.0          openxlsx_4.2.3         remotes_2.2.0         
 [13] annotate_1.68.0        sandwich_3.0-0         prettyunits_1.1.1      colorspace_2.0-0       ggrepel_0.9.0          rvest_0.3.6           
 [19] blob_1.2.1             haven_2.3.1            xfun_0.20              dplyr_1.0.2            callr_3.5.1            crayon_1.3.4          
 [25] RCurl_1.98-1.2         jsonlite_1.7.2         genefilter_1.72.0      zoo_1.8-8              glue_1.4.2             gtable_0.3.0          
 [31] zlibbioc_1.36.0        XVector_0.30.0         webshot_0.5.2          DelayedArray_0.16.0    pkgbuild_1.2.0         abind_1.4-5           
 [37] mvtnorm_1.1-1          DBI_1.1.0              Rcpp_1.0.5             xtable_1.8-4           foreign_0.8-81         bit_4.0.4             
 [43] htmlwidgets_1.5.3      httr_1.4.2             RColorBrewer_1.1-2     ellipsis_0.3.1         farver_2.0.3           pkgconfig_2.0.3       
 [49] reshape_0.8.8          XML_3.99-0.5           locfit_1.5-9.4         labeling_0.4.2         tidyselect_1.1.0       rlang_0.4.10          
 [55] AnnotationDbi_1.52.0   munsell_0.5.0          cellranger_1.1.0       tools_4.0.3            cli_2.2.0              generics_0.1.0        
 [61] RSQLite_2.2.1          ggdendro_0.1.22        evaluate_0.14          processx_3.4.5         bit64_4.0.5            fs_1.5.0              
 [67] zip_2.1.1              caTools_1.18.0         purrr_0.3.4            nlme_3.1-151           xml2_1.3.2             compiler_4.0.3        
 [73] rstudioapi_0.13        plotly_4.9.2.2         curl_4.3               testthat_3.0.1         tibble_3.0.4           statmod_1.4.35        
 [79] geneplotter_1.68.0     stringi_1.5.3          ps_1.5.0               desc_1.2.0             forcats_0.5.0          lattice_0.20-41       
 [85] nloptr_1.2.2.2         vctrs_0.3.6            pillar_1.4.7           lifecycle_0.2.0        estimability_1.3       data.table_1.13.6     
 [91] bitops_1.0-6           R6_2.5.0               KernSmooth_2.23-18     rio_0.5.16             sessioninfo_1.1.1      codetools_0.2-18      
 [97] boot_1.3-25            gtools_3.8.2           assertthat_0.2.1       pkgload_1.1.0          rprojroot_2.0.2        withr_2.3.0           
[103] multcomp_1.4-15        GenomeInfoDbData_1.2.4 hms_0.5.3              tidyr_1.1.2            coda_0.19-4            minqa_1.2.4           
[109] rmarkdown_2.6          tinytex_0.28
DESeq2 • 1.4k views
ADD COMMENT
1
Entering edit mode
@mikelove
Last seen 7 hours ago
United States

For questions about how to set up the statistical design for your problem, I recommend to work with a local statistician.

Unfortunately, I'm limited in the time I can spend on the support site, and have to restrict myself to software-related questions.

ADD COMMENT

Login before adding your answer.

Traffic: 473 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6