First, this is a rather large experiment. Roughly 3000 features by 1300 samples. Creating the `dds` object takes 12.5 hours with 20 workers at 3.1 ghz, and resultsNames(dds)
consists of 487 items.
> resultsNames(dds)[1:8] [1] "Intercept" "group_003_CGO_1_vs_MethodBlank_0" [3] "group_003_CGO_10_vs_MethodBlank_0" "group_003_CGO_100_vs_MethodBlank_0" [5] "group_006_HFO_1_vs_MethodBlank_0" "group_006_HFO_10_vs_MethodBlank_0" [7] "group_006_HFO_100_vs_MethodBlank_0" "group_007_HFO_1_vs_MethodBlank_0"
This treatment set consists of 161 chemicals that we then compare using contrasts for the dose = 100 to the methodblank controls as follows: results(dds, coef = "group_006_HFO_100_vs_MethodBlank_0", parrallel = TRUE).
This takes about 5 minutes for each contrast.
When I try to use lfcShrink(dds, coef="group_006_HFO_100_vs_MethodBlank_0", parallel = TRUE, BPPARAM=SnowParam(18))
, it runs for hours before I interrupt R. While doing so, it pegs all 20 workers at 100%.
Am I doing something wrong here? The vignette indicates this shouldn't take very long, especially with parallel workers.
Thanks for your time.
***System Info***
Microsoft R Open 3.4.2
The enhanced R distribution from Microsoft
Microsoft packages Copyright (C) 2017 Microsoft Corporation
Using the Intel MKL for parallel mathematical computing (using 10 cores).
Default CRAN mirror snapshot taken on 2017-10-15.
See: https://mran.microsoft.com/.
> sessionInfo() R version 3.4.2 (2017-09-28) Platform: x86_64-w64-mingw32/x64 (64-bit) Running under: Windows 7 x64 (build 7601) Service Pack 1 Matrix products: default locale: [1] LC_COLLATE=English_United States.1252 LC_CTYPE=English_United States.1252 LC_MONETARY=English_United States.1252 LC_NUMERIC=C LC_TIME=English_United States.1252 attached base packages: [1] parallel stats4 stats graphics grDevices utils datasets methods base other attached packages: [1] ggplot2_2.2.1 dplyr_0.7.4 BiocParallel_1.12.0 DESeq2_1.18.1 SummarizedExperiment_1.8.0 DelayedArray_0.4.1 matrixStats_0.52.2 Biobase_2.38.0 [9] GenomicRanges_1.30.0 GenomeInfoDb_1.14.0 IRanges_2.12.0 S4Vectors_0.16.0 BiocGenerics_0.24.0 RevoUtils_10.0.6 BiocInstaller_1.28.0 RevoUtilsMath_10.0.1 loaded via a namespace (and not attached): [1] tidyr_0.7.2 bit64_0.9-7 splines_3.4.2 Formula_1.2-2 assertthat_0.2.0 latticeExtra_0.6-28 blob_1.1.0 GenomeInfoDbData_0.99.1 yaml_2.1.16 [10] RSQLite_2.0 backports_1.1.1 lattice_0.20-35 glue_1.2.0 digest_0.6.12 RColorBrewer_1.1-2 XVector_0.18.0 checkmate_1.8.5 colorspace_1.3-2 [19] htmltools_0.3.6 Matrix_1.2-12 plyr_1.8.4 XML_3.98-1.9 pkgconfig_2.0.1 genefilter_1.60.0 zlibbioc_1.24.0 purrr_0.2.4 xtable_1.8-2 [28] scales_0.5.0 htmlTable_1.11.0 tibble_1.3.4 annotate_1.56.1 nnet_7.3-12 lazyeval_0.2.1 survival_2.41-3 magrittr_1.5 memoise_1.1.0 [37] foreign_0.8-69 tools_3.4.2 data.table_1.10.4-3 stringr_1.2.0 locfit_1.5-9.1 munsell_0.4.3 cluster_2.0.6 AnnotationDbi_1.40.0 bindrcpp_0.2 [46] compiler_3.4.2 rlang_0.1.4 grid_3.4.2 RCurl_1.95-4.8 rstudioapi_0.7 htmlwidgets_0.9 bitops_1.0-6 base64enc_0.1-3 gtable_0.2.0 [55] DBI_0.7 R6_2.2.2 gridExtra_2.3 knitr_1.17 bit_1.1-12 bindr_0.1 Hmisc_4.0-3 stringi_1.1.6 Rcpp_0.12.14 [64] geneplotter_1.56.0 rpart_4.1-11 acepack_1.4.1