I have perform differential analysis using deseq2. In the result I have many genes have very low padj. It is possible?
> res[which.min(res$padj),]
log2 fold change (MAP): condition Myoepithelioma vs EMC
Wald test p-value: condition Myoepithelioma vs EMC
DataFrame with 1 row and 11 columns
baseMean log2FoldChange lfcSE stat pvalue padj
<numeric> <numeric> <numeric> <numeric> <numeric> <numeric>
ENSG00000150361 1289.267 -12.98314 0.7835716 -16.56919 1.163906e-61 1.875285e-57
ensembl entrez hgnc_symbol chromosome band
<character> <integer> <character> <character> <character>
ENSG00000150361 ENSG00000150361 57626 KLHL1 13 q21.33
subset(res,res$padj< 1*10^-20)
log2 fold change (MAP): condition Myoepithelioma vs EMC
Wald test p-value: condition Myoepithelioma vs EMC
DataFrame with 4 rows and 11 columns
baseMean log2FoldChange lfcSE stat pvalue padj
<numeric> <numeric> <numeric> <numeric> <numeric> <numeric>
ENSG00000150361 1289.2669 -12.983144 0.7835716 -16.56919 1.163906e-61 1.875285e-57
ENSG00000184905 1047.7598 9.413017 0.9076872 10.37033 3.383477e-25 1.362864e-21
ENSG00000196850 972.6995 -4.283253 0.3794026 -11.28947 1.479300e-29 7.944829e-26
ENSG00000197696 482.4788 -7.368074 0.5813144 -12.67485 8.151262e-37 6.566656e-33
ensembl entrez hgnc_symbol chromosome band
<character> <integer> <character> <character> <character>
ENSG00000150361 ENSG00000150361 57626 KLHL1 13 q21.33
ENSG00000184905 ENSG00000184905 140597 TCEAL2 X q22.1
ENSG00000196850 ENSG00000196850 160760 PPTC7 12 q24.11
ENSG00000197696 ENSG00000197696 4828 NMB 15 q25.3
> sessionInfo() R version 3.3.2 (2016-10-31) Platform: x86_64-pc-linux-gnu (64-bit) Running under: Ubuntu 16.04.3 LTS locale: [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C LC_TIME=it_IT.UTF-8 [4] LC_COLLATE=en_US.UTF-8 LC_MONETARY=it_IT.UTF-8 LC_MESSAGES=en_US.UTF-8 [7] LC_PAPER=it_IT.UTF-8 LC_NAME=C LC_ADDRESS=C [10] LC_TELEPHONE=C LC_MEASUREMENT=it_IT.UTF-8 LC_IDENTIFICATION=C attached base packages: [1] parallel stats4 stats graphics grDevices utils datasets methods base other attached packages: [1] gplots_3.0.1 genefilter_1.56.0 limma_3.30.13 [4] biomaRt_2.30.0 reshape2_1.4.3 RColorBrewer_1.1-2 [7] ggplot2_2.2.1 pheatmap_1.0.8 DESeq2_1.14.1 [10] SummarizedExperiment_1.4.0 Biobase_2.34.0 GenomicRanges_1.26.4 [13] GenomeInfoDb_1.10.3 IRanges_2.8.2 S4Vectors_0.12.2 [16] BiocGenerics_0.20.0 RTCGAToolbox_2.4.0 loaded via a namespace (and not attached): [1] tidyr_0.7.2 bit64_0.9-7 splines_3.3.2 gtools_3.5.0 [5] Formula_1.2-2 assertthat_0.2.0 latticeExtra_0.6-28 blob_1.1.0 [9] pillar_1.1.0 RSQLite_2.0 backports_1.1.2 lattice_0.20-35 [13] glue_1.2.0 digest_0.6.14 XVector_0.14.1 checkmate_1.8.5 [17] QoRTs_1.1.8 colorspace_1.3-2 htmltools_0.3.6 Matrix_1.2-10 [21] plyr_1.8.4 XML_3.98-1.9 pkgconfig_2.0.1 zlibbioc_1.20.0 [25] purrr_0.2.4 xtable_1.8-2 RCircos_1.2.0 scales_0.5.0 [29] gdata_2.18.0 BiocParallel_1.8.2 htmlTable_1.11.0 tibble_1.4.1 [33] annotate_1.52.1 nnet_7.3-12 lazyeval_0.2.1 survival_2.41-3 [37] RJSONIO_1.3-0 magrittr_1.5 memoise_1.1.0 foreign_0.8-69 [41] tools_3.3.2 data.table_1.10.4-3 stringr_1.2.0 munsell_0.4.3 [45] locfit_1.5-9.1 cluster_2.0.6 AnnotationDbi_1.36.2 bindrcpp_0.2 [49] caTools_1.17.1 rlang_0.1.6 grid_3.3.2 RCurl_1.95-4.10 [53] rstudioapi_0.7 htmlwidgets_0.9 labeling_0.3 bitops_1.0-6 [57] base64enc_0.1-3 gtable_0.2.0 DBI_0.7 R6_2.2.2 [61] gridExtra_2.3 knitr_1.18 dplyr_0.7.4 bit_1.1-12 [65] bindr_0.1 Hmisc_4.1-1 KernSmooth_2.23-15 stringi_1.1.6 [69] Rcpp_0.12.14 geneplotter_1.52.0 rpart_4.1-12 acepack_1.4.1

thanks for the help..
the problem that I have all the data are in that situation...
res<-results(dds) > head(res) log2 fold change (MLE): Intercept Wald test p-value: Intercept DataFrame with 6 rows and 6 columns baseMean log2FoldChange lfcSE stat pvalue <numeric> <numeric> <numeric> <numeric> <numeric> ENSG00000000003 132.3 7.05 0.1643 42.9 0.0e+00 ENSG00000000419 80.1 6.32 0.0991 63.8 0.0e+00 ENSG00000000457 109.2 6.77 0.0622 108.8 0.0e+00 ENSG00000000460 50.8 5.67 0.0931 60.8 0.0e+00 ENSG00000000938 22.6 4.50 0.1746 25.8 2.2e-146 ENSG00000000971 1729.9 10.76 0.2008 53.6 0.0e+00 padj <numeric> ENSG00000000003 0.00e+00 ENSG00000000419 0.00e+00 ENSG00000000457 0.00e+00 ENSG00000000460 0.00e+00 ENSG00000000938 3.28e-146 ENSG00000000971 0.00e+00 > plotCounts(dds,gene=which.min(res$padj)) > res["ENSG00000000003",] log2 fold change (MLE): Intercept Wald test p-value: Intercept DataFrame with 1 row and 6 columns baseMean log2FoldChange lfcSE stat pvalue <numeric> <numeric> <numeric> <numeric> <numeric> ENSG00000000003 132 7.05 0.164 42.9 0 padj <numeric> ENSG00000000003 0 > summary(res) out of 19632 with nonzero total read count adjusted p-value < 0.1 LFC > 0 (up) : 19624, 100% LFC < 0 (down) : 0, 0% outliers [1] : 0, 0% low counts [2] : 0, 0% (mean count < 1) [1] see 'cooksCutoff' argument of ?results [2] see 'independentFiltering' argument of ?results > sessionInfo() R version 3.3.2 (2016-10-31) Platform: x86_64-pc-linux-gnu (64-bit) Running under: Ubuntu 16.04.3 LTS locale: [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C [3] LC_TIME=it_IT.UTF-8 LC_COLLATE=en_US.UTF-8 [5] LC_MONETARY=it_IT.UTF-8 LC_MESSAGES=en_US.UTF-8 [7] LC_PAPER=it_IT.UTF-8 LC_NAME=C [9] LC_ADDRESS=C LC_TELEPHONE=C [11] LC_MEASUREMENT=it_IT.UTF-8 LC_IDENTIFICATION=C attached base packages: [1] parallel stats4 stats graphics grDevices utils datasets [8] methods base other attached packages: [1] genefilter_1.56.0 rafalib_1.0.0 [3] ggplot2_2.2.1 limma_3.30.13 [5] RColorBrewer_1.1-2 gplots_3.0.1 [7] org.Hs.eg.db_3.4.0 annotate_1.52.1 [9] XML_3.98-1.9 AnnotationDbi_1.36.2 [11] biomaRt_2.30.0 pheatmap_1.0.8 [13] tximportData_1.2.0 tximport_1.2.0 [15] DESeq2_1.14.1 SummarizedExperiment_1.4.0 [17] Biobase_2.34.0 GenomicRanges_1.26.4 [19] GenomeInfoDb_1.10.3 IRanges_2.8.2 [21] S4Vectors_0.12.2 BiocGenerics_0.20.0 [23] RTCGAToolbox_2.4.0 loaded via a namespace (and not attached): [1] bit64_0.9-7 splines_3.3.2 gtools_3.5.0 [4] Formula_1.2-2 latticeExtra_0.6-28 blob_1.1.0 [7] pillar_1.1.0 RSQLite_2.0 backports_1.1.2 [10] lattice_0.20-35 digest_0.6.15 XVector_0.14.1 [13] checkmate_1.8.5 QoRTs_1.1.8 colorspace_1.3-2 [16] htmltools_0.3.6 Matrix_1.2-12 plyr_1.8.4 [19] pkgconfig_2.0.1 zlibbioc_1.20.0 xtable_1.8-2 [22] RCircos_1.2.0 scales_0.5.0 gdata_2.18.0 [25] BiocParallel_1.8.2 htmlTable_1.11.2 tibble_1.4.2 [28] nnet_7.3-12 lazyeval_0.2.1 survival_2.41-3 [31] RJSONIO_1.3-0 magrittr_1.5 memoise_1.1.0 [34] foreign_0.8-69 tools_3.3.2 data.table_1.10.4-3 [37] stringr_1.2.0 munsell_0.4.3 locfit_1.5-9.1 [40] cluster_2.0.6 caTools_1.17.1 rlang_0.1.6 [43] grid_3.3.2 RCurl_1.95-4.10 rstudioapi_0.7 [46] htmlwidgets_1.0 labeling_0.3 bitops_1.0-6 [49] base64enc_0.1-3 gtable_0.2.0 DBI_0.7 [52] gridExtra_2.3 knitr_1.19 bit_1.1-12 [55] Hmisc_4.1-1 KernSmooth_2.23-15 stringi_1.1.6 [58] Rcpp_0.12.15 geneplotter_1.52.0 rpart_4.1-12 [61] acepack_1.4.1You are testing the Intercept coefficient it says above. Use a design eg ~condition
thanks It was an error on the preparation on DESeqDataSetFromHTSeqCount so they not change that parameter.
Thanks s much!