Hello everyone,
I'm trying to use the tool MEDIPS to find the RMS value of each genes.
There are 6 samples (GD16003-GD16008), 2 of them are hyper-methylated (GD16005 & GD16008) and comfirmed in RPKM value, but these two samples are not having the highest value in RMS value.
Does anyone knows why the hyper-methylated samples not having the highest RMS value?
Mean value are listed below.
CpG | rpkm | rms | |
CpG | GD16003 | 0.676719 | 0.2192527 |
CpG | GD16004 | 0.526604 | 0.202631 |
CpG | GD16005 | 1.492834 | 0.1860266 |
CpG | GD16006 | 0.328434 | 0.1620868 |
CpG | GD16007 | 0.395263 | 0.233723 |
CpG | GD16008 | 1.40204 | 0.1974412 |
Gene | rpkm | rms | |
Gene | GD16003 | 0.949448 | 0.4457013 |
Gene | GD16004 | 0.958066 | 0.4601055 |
Gene | GD16005 | 1.179833 | 0.4229319 |
Gene | GD16006 | 0.887107 | 0.4300184 |
Gene | GD16007 | 0.803318 | 0.4130587 |
Gene | GD16008 | 1.131659 | 0.428664 |
And here's the Rscript,
library(BSgenome)
library(MEDIPS)
library(BSgenome.Mmusculus.UCSC.mm10)
BSgenome="BSgenome.Mmusculus.UCSC.mm10"
uniq=1e-3
extend=300
shift=0
ws=300
prcBamFile <- "GD16007.bam"
ROI <- read.delim("ROI_gene.txt")
Input <- MEDIPS.createSet(file=prcBamFile, BSgenome=BSgenome, extend=extend, shift=shift, uniq=uniq, window_size=ws)
CS = MEDIPS.couplingVector(pattern="CG", refObj=Input)
mr.edgeR <- MEDIPS.meth(MSet1 = Input, CSet = CS, p.adj="bonferroni", diff.method="edgeR", CNV=FALSE, MeDIP=TRUE, minRowSum=10, diffnorm="tmm")
mr.edgeR.roi <- MEDIPS.selectROIs(results=mr.edgeR, rois=ROI, columns=NULL, summarize="avg")
write.table(mr.edgeR.roi, file="GD16007_result_roiGene.tmp", quote=FALSE, sep="\t", row.names=FALSE, col.names=TRUE)