Entering edit mode
frene
•
0
@frene-20306
Last seen 6.1 years ago
Hello everybody,
As I can read on the DESEQ2 manual, if we want an other p-adj diferent than 0.1 we have to select it by changing the alpha value. When I change it in the result formula:
alpha <- 0.05
res_0.05_filt <- results(dds1,contrast=c("condition","WT", "OE"),alpha=alpha)
Why I obtain more significant genes with p-adj 0.05 than 0.1? Why the mean count change in both cases? It is correct to do the results with 0.1 and them filter by 0.05?
here is the DESeq2 exit:
**> summary(res1)
out of 24732 with nonzero total read count
adjusted p-value < 0.1
LFC > 0 (up) : 17, 0.069%
LFC < 0 (down) : 24, 0.097%
outliers [1] : 0, 0%
low counts [2] : 6672, 27%
(mean count < 17)
[1] see 'cooksCutoff' argument of ?results
[2] see 'independentFiltering' argument of ?results
> table(res1$padj<=0.05)
FALSE TRUE
18050 10
> summary(res_0.05_filt)
out of 24732 with nonzero total read count
adjusted p-value < 0.05
LFC > 0 (up) : 8, 0.032%
LFC < 0 (down) : 13, 0.053%
outliers [1] : 0, 0%
low counts [2] : 16679, 67%
(mean count < 239)
[1] see 'cooksCutoff' argument of ?results
[2] see 'independentFiltering' argument of ?results
> table(res_0.05_filt$padj<=0.05)
FALSE TRUE
8032 21**
Here is the sessioninfo:
> sessionInfo()
R version 3.5.1 (2018-07-02)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows >= 8 x64 (build 9200)
Matrix products: default
locale:
[1] LC_COLLATE=Spanish_Spain.1252 LC_CTYPE=Spanish_Spain.1252 LC_MONETARY=Spanish_Spain.1252 LC_NUMERIC=C
[5] LC_TIME=Spanish_Spain.1252
attached base packages:
[1] grid parallel stats4 stats graphics grDevices utils datasets methods base
other attached packages:
[1] ggbiplot_0.55 scales_1.0.0 plyr_1.8.4 corrplot_0.84 RColorBrewer_1.1-2
[6] pheatmap_1.0.12 sva_3.30.1 genefilter_1.64.0 mgcv_1.8-28 nlme_3.1-137
[11] gplots_3.0.1.1 ggplot2_3.1.0 limma_3.38.3 DESeq2_1.22.2 SummarizedExperiment_1.12.0
[16] DelayedArray_0.8.0 BiocParallel_1.16.6 matrixStats_0.54.0 Biobase_2.42.0 GenomicRanges_1.34.0
[21] GenomeInfoDb_1.18.2 IRanges_2.16.0 S4Vectors_0.20.1 BiocGenerics_0.28.0
loaded via a namespace (and not attached):
[1] bit64_0.9-7 splines_3.5.1 gtools_3.8.1 Formula_1.2-3 latticeExtra_0.6-28 blob_1.1.1
[7] GenomeInfoDbData_1.2.0 pillar_1.3.1 RSQLite_2.1.1 backports_1.1.3 lattice_0.20-38 digest_0.6.18
[13] XVector_0.22.0 checkmate_1.9.1 colorspace_1.4-1 htmltools_0.3.6 Matrix_1.2-17 XML_3.98-1.19
[19] pkgconfig_2.0.2 zlibbioc_1.28.0 xtable_1.8-3 gdata_2.18.0 htmlTable_1.13.1 tibble_2.1.1
[25] annotate_1.60.1 withr_2.1.2 nnet_7.3-12 lazyeval_0.2.2 survival_2.43-3 magrittr_1.5
[31] crayon_1.3.4 memoise_1.1.0 MASS_7.3-51.1 foreign_0.8-71 tools_3.5.1 data.table_1.12.0
[37] stringr_1.4.0 munsell_0.5.0 locfit_1.5-9.1 cluster_2.0.7-1 AnnotationDbi_1.44.0 compiler_3.5.1
[43] caTools_1.17.1.2 rlang_0.3.2 RCurl_1.95-4.12 rstudioapi_0.10 htmlwidgets_1.3 labeling_0.3
[49] bitops_1.0-6 base64enc_0.1-3 gtable_0.3.0 DBI_1.0.0 gridExtra_2.3 knitr_1.22
[55] bit_1.1-14 Hmisc_4.2-0 KernSmooth_2.23-15 stringi_1.4.3 Rcpp_1.0.1 geneplotter_1.60.0
[61] rpart_4.1-13 acepack_1.4.1 xfun_0.5
>
Thanks Michel,
I saw a problem because with alpha 0.1 I obtained 10 genes and with 0.05, 21 genes, but it's true that the low counts rejection number of genes is greater with 0.05.
Another related question to de independent filtering. This is probably because of my limited knowledge , but If you turn it off with independentFiltering=FALSE, you get the p-adj values for all the genes but the values are higher than if you do with the independentFiltering=TRUE (default).
is there any way to make the independent Filtering with a basemean value defined by the user?
thanks a lot.
No it’s an automatic procedure (see paper or vignettte).
You can turn it off and filter the results table and then recompute adjusted pvalues with p.adjust().