I am trying to apply rma
from oligo
package into data of file GSE22247_non-normalized_data.txt
from this study: GSE22247
Did:
# read txt file into dataframe:
rawtxt <- read.delim(paste0(txtpath), sep='\t', skip = 4, header = T)
# convert dataframe into expression set:
rawData <- new("ExpressionFeatureSet", exprs = as.matrix(rawtxt))
# apply rma:
normData <- rma(rawData)
This gives the error:
Error in library(pdn, character.only = TRUE) :
'package' must be of length 1
Also, when printing rawData gives this error:
ExpressionFeatureSet (storageMode: lockedEnvironment)
assayData: 48803 features, 13 samples
element names: exprs
protocolData: none
phenoData: none
featureData: none
experimentData: use 'experimentData(object)'
Annotation:
character(0)
Failed with error: ‘'package' must be of length 1’
Attempting to obtain '' from BioConductor website.
Checking to see if your internet connection works...
Error in if (!pkgname %in% biocPkgs[, "Package"]) { :
argument is of length zero
How to solve this?
Thank you for your answer. The idea is to apply the same normalization method to several microarray raw data from several studies. I wanted to do it on affymetrix, illumina and agilent data. Do you know a normalization method that can be applied to these three platforms or at least applied to both affymetrix and illumina? If not, could you please tell me what kind of normalization/package is done on illuminia and agilent, and whether limma (diferential gene expression) can be applied to these three?
I think you are going about this all wrong. You seem to want to do stuff without having the requisite background knowledge to know if what you are doing is sensible or not. For example, you want to do 'the same normalization method' on three different array platforms without knowing what methods are available for those platforms!
It's not clear why you would want to do such a thing, unless you think that by using the same normalization method on the different platforms you could then combine or something? But that's not a thing. Normalizing data doesn't make data from completely different platforms comparable. It's intended to remove technical biases between arrays of the same type.
Anyway, you are getting tripped up on technical issues because you don't know enough about the arrays and how best to analyze. That's not something you get fixed by posting questions on this site. You fix that by doing your homework, learning about the different array platforms, and how they are analyzed. You could start with the affy, oligo, and limma vignettes (or User's guide in the case of limma). Somehow lumi doesn't have a vignette, so you could read the citations for that package.