I'm attempting to re-analyze some old microarray data. The microarrays are in NimbleGen format, originally .pair files, but i have (successfully) converted them to .xys files. I would like to normalize them together, as one data set, using oligo. The issues is that one of the microarrays uses the 090901RatHX12expr.ndf design file and the other two use 100718RatHX12expr.ndf.
My question is: is it possible to create one dataset of all 3 arrays, using oligo, despite having two different design files?
I can generate an ExpressionFeatureSet of the first array with the different design file, and a separate set of the other two arrays. When I've tried creating one set using all three arrays, I get the below error:
allData <- read.xysfiles(allXYS, phenoData = allPD, checkType = F)
Loading required package: pd.090901.rat.hx12.expr
Platform design info loaded.
Checking designs for each XYS file... Error in smartReadXYS(filenames, sampleNames) :
'./raw-data/xysfiles/BR1/P32_control_apex_A01_532.xys' and './raw-data/xysfiles/BR2/531207_A01_EB-P32-SGN-CA_2012-03-16_532.xys' use different designs.
Here is the code used to generate the list of .xys files and other information need to generate the ExpressionFeatureSet:
allXYS <- c(BR1xys, BR2xys, BR3xys)
#metadata
allConditions <- data.frame(Key=rep(c("P32HA", "P32HB", "P32DA", "P32DB", "P60HA", "P60HB", "P60DA", "P60DB", "P32HA", "P32HB", "P32DA", "P32DB", "P60HA", "P60HB", "P60DA", "P60DB", "P32DA", "P32DB", "P32HA", "P32HB", "P60DA", "P60DB", "P60HA", "P60HB"), each=3))
rownames(allConditions) <- basename(allXYS)
allLVLs <- c("exprs", "_ALL_")
allMtData <- data.frame(channel=factor("exprs", levels=allLVLs), labelDescription="Sample type")
allPD <- new("AnnotatedDataFrame", data=allConditions, varMetadata=allMtData)
#ExpressionFeatureSet
allData <- read.xysfiles(allXYS, phenoData = allPD, checkType = F)
> sessionInfo()
R version 3.5.3 (2019-03-11)
Platform: x86_64-redhat-linux-gnu (64-bit)
Running under: Fedora 30 (MATE-Compiz)
Matrix products: default
BLAS/LAPACK: /usr/lib64/R/lib/libRblas.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8 LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats4 parallel stats graphics grDevices utils datasets methods base
other attached packages:
[1] pd.090901.rat.hx12.expr_0.0.1 pd.100718.rat.hx12.expr_0.0.1 DBI_1.1.0 genefilter_1.64.0
[5] limma_3.38.3 pdInfoBuilder_1.46.0 oligo_1.46.0 Biostrings_2.50.2
[9] XVector_0.22.0 IRanges_2.16.0 S4Vectors_0.20.1 affxparser_1.54.0
[13] RSQLite_2.1.5 Biobase_2.42.0 BiocGenerics_0.28.0 oligoClasses_1.44.0
loaded via a namespace (and not attached):
[1] SummarizedExperiment_1.12.0 xfun_0.11 splines_3.5.3 lattice_0.20-38
[5] vctrs_0.2.1 yaml_2.2.0 blob_1.2.0 XML_3.98-1.20
[9] survival_3.1-8 rlang_0.4.1 pillar_1.4.3 BiocParallel_1.16.6
[13] bit64_0.9-7 affyio_1.52.0 matrixStats_0.55.0 GenomeInfoDbData_1.2.0
[17] foreach_1.4.7 zlibbioc_1.28.0 codetools_0.2-16 memoise_1.1.0
[21] knitr_1.25 ff_2.2-14 GenomeInfoDb_1.18.2 AnnotationDbi_1.44.0
[25] preprocessCore_1.44.0 Rcpp_1.0.3 xtable_1.8-4 backports_1.1.5
[29] BiocManager_1.30.10 DelayedArray_0.8.0 annotate_1.60.1 bit_1.1-14
[33] digest_0.6.23 GenomicRanges_1.34.0 grid_3.5.3 tools_3.5.3
[37] bitops_1.0-6 RCurl_1.95-4.12 tibble_2.1.3 crayon_1.3.4
[41] pkgconfig_2.0.3 zeallot_0.1.0 Matrix_1.2-15 rstudioapi_0.10
[45] iterators_1.0.12 compiler_3.5.3
