Dist of exprSet object
1
0
Entering edit mode
@marco-blanchette-1817
Last seen 10.3 years ago
An embedded and charset-unspecified text was scrubbed... Name: not available Url: https://stat.ethz.ch/pipermail/bioconductor/attachments/20060726/ bc999db7/attachment.pl
• 1.2k views
ADD COMMENT
0
Entering edit mode
Marcus Davy ▴ 680
@marcus-davy-374
Last seen 10.3 years ago
P 17 of the vignette("affy"). e.g. chipCols <- rainbow(ncol(exprs(affybatch.example))) boxplot(affybatch.example, col=chipCols) Marcus On 7/27/06 10:40 AM, "Marco Blanchette" <mblanche at="" berkeley.edu=""> wrote: > Thank you all, > > Using bioclite to download the annotation fixed the problem. > > Now, I am getting into simpler R problem. I have an exprSet object of 4 > arrays: >> eset > Expression Set (exprSet) with > 18952 genes > 4 samples > phenoData object with 1 variables and 4 cases > varLabels > sample: arbitrary numbering > > My goal is to draw a boxplot of the 4 different samples. Surely I can do: >> boxplot (exprs(eset)[,1], exprs(eset)[,2], exprs(eset)[,3], exprs(eset)[,4], > col=c(2,3,4,5)) > > But is there an easier way to do with without having to subscript each > individual column? [right now I have only 4 but when I will have 20, I?ll > get bored quite rapidly] > > Sorry if this sounds easy, I am still learning the basics of R > > Marco > ______________________________ > Marco Blanchette, Ph.D. > > mblanche at uclink.berkeley.edu > > Donald C. Rio's lab > Department of Molecular and Cell Biology > 16 Barker Hall > University of California > Berkeley, CA 94720-3204 > > Tel: (510) 642-1084 > Cell: (510) 847-0996 > Fax: (510) 642-6062 ______________________________________________________ The contents of this e-mail are privileged and/or confidenti...{{dropped}}
ADD COMMENT
0
Entering edit mode
Actually you need affyPLM loaded to boxplot an exprSet. affy only provides the method for AffyBatch objects. Otherwise your example is correct. Best, Ben eg ..... > library(affy) Loading required package: Biobase Loading required package: tools Welcome to Bioconductor Vignettes contain introductory material. To view, simply type 'openVignette()' or start with 'help(Biobase)'. For details on reading vignettes, see the openVignette help page. Loading required package: affyio > library(affydata) > data(Dilution) > eset <- rma(Dilution) Background correcting Normalizing Calculating Expression > boxplot(eset) # throws error Error in boxplot.default(eset) : invalid first argument > library(affyPLM) Loading required package: gcrma Loading required package: matchprobes > boxplot(eset) #works fine. On Thu, 2006-07-27 at 10:58 +1200, Marcus Davy wrote: > P 17 of the vignette("affy"). > > e.g. > > chipCols <- rainbow(ncol(exprs(affybatch.example))) > boxplot(affybatch.example, col=chipCols) > > Marcus > > > On 7/27/06 10:40 AM, "Marco Blanchette" <mblanche at="" berkeley.edu=""> wrote: > > > Thank you all, > > > > Using bioclite to download the annotation fixed the problem. > > > > Now, I am getting into simpler R problem. I have an exprSet object of 4 > > arrays: > >> eset > > Expression Set (exprSet) with > > 18952 genes > > 4 samples > > phenoData object with 1 variables and 4 cases > > varLabels > > sample: arbitrary numbering > > > > My goal is to draw a boxplot of the 4 different samples. Surely I can do: > >> boxplot (exprs(eset)[,1], exprs(eset)[,2], exprs(eset)[,3], exprs(eset)[,4], > > col=c(2,3,4,5)) > > > > But is there an easier way to do with without having to subscript each > > individual column? [right now I have only 4 but when I will have 20, I?ll > > get bored quite rapidly] > > > > Sorry if this sounds easy, I am still learning the basics of R > > > > Marco > > ______________________________ > > Marco Blanchette, Ph.D. > > > > mblanche at uclink.berkeley.edu > > > > Donald C. Rio's lab > > Department of Molecular and Cell Biology > > 16 Barker Hall > > University of California > > Berkeley, CA 94720-3204 > > > > Tel: (510) 642-1084 > > Cell: (510) 847-0996 > > Fax: (510) 642-6062 > > > ______________________________________________________ > > The contents of this e-mail are privileged and/or confidenti...{{dropped}} > > _______________________________________________ > Bioconductor mailing list > Bioconductor at stat.math.ethz.ch > https://stat.ethz.ch/mailman/listinfo/bioconductor > Search the archives: http://news.gmane.org/gmane.science.biology.informatics.conductor
ADD REPLY
0
Entering edit mode
Hum... This exemplified my hate-love relationship that I have with R... Very powerful, but very difficult to master... One more issue. Each experiments are in duplicates (2 experiments, 2 replicates -> 4 arrays). My goal is to partition the distribution in genes in the 10% top most expressed, 10% to 20% most expressed, 20% to 30% most expressed, and so on. eset is my exprSet object containing the rma computed expression for each gene on the 4 arrays: > eset Expression Set (exprSet) with 18952 genes 4 samples phenoData object with 1 variables and 4 cases varLabels sample: arbitrary numbering So I need to: 1) Get the average expression for each gene from the 2 replicates Would you do: >exp1 = iter(eset[,1,2], , mean) >exp2 = iter(eset[,2,3], , mean) Or is there a better way? 2) Break down the distribution per 10% bin as in >top10 = geneNames(eset)[(rank(exp1) >= 0*(length(exp1)/10) & rank(exp1) < 1*(length(exp1)/10))] >top10_20 = geneNames(eset)[(rank(exp1) >= 1*(length(exp1)/10) & rank(exp1) < 2*(length(exp1)/10))] top20_30 = geneNames(eset)[(rank(exp1) >= 2*(length(exp1)/10) & rank(exp1) < 3*(length(exp1)/10))] Or is there a better way? [I'm pretty sure there a more R elegant way than that...] Many thanks folks Cheers, Marco On 7/26/06 4:05 PM, "Ben Bolstad" <bmb at="" bmbolstad.com=""> wrote: > Actually you need affyPLM loaded to boxplot an exprSet. affy only > provides the method for AffyBatch objects. Otherwise your example is > correct. > > Best, > > Ben > > > eg ..... > >> library(affy) > Loading required package: Biobase > Loading required package: tools > > Welcome to Bioconductor > > > Vignettes contain introductory material. > > To view, simply type 'openVignette()' or start with 'help(Biobase)'. > > For details on reading vignettes, see the openVignette help page. > > > Loading required package: affyio >> library(affydata) >> data(Dilution) >> eset <- rma(Dilution) > Background correcting > Normalizing > Calculating Expression >> boxplot(eset) # throws error > Error in boxplot.default(eset) : invalid first argument >> library(affyPLM) > Loading required package: gcrma > Loading required package: matchprobes >> boxplot(eset) #works fine. > > > > > > > > > On Thu, 2006-07-27 at 10:58 +1200, Marcus Davy wrote: >> P 17 of the vignette("affy"). >> >> e.g. >> >> chipCols <- rainbow(ncol(exprs(affybatch.example))) >> boxplot(affybatch.example, col=chipCols) >> >> Marcus >> >> >> On 7/27/06 10:40 AM, "Marco Blanchette" <mblanche at="" berkeley.edu=""> wrote: >> >>> Thank you all, >>> >>> Using bioclite to download the annotation fixed the problem. >>> >>> Now, I am getting into simpler R problem. I have an exprSet object of 4 >>> arrays: >>>> eset >>> Expression Set (exprSet) with >>> 18952 genes >>> 4 samples >>> phenoData object with 1 variables and 4 cases >>> varLabels >>> sample: arbitrary numbering >>> >>> My goal is to draw a boxplot of the 4 different samples. Surely I can do: >>>> boxplot (exprs(eset)[,1], exprs(eset)[,2], exprs(eset)[,3], >>>> exprs(eset)[,4], >>> col=c(2,3,4,5)) >>> >>> But is there an easier way to do with without having to subscript each >>> individual column? [right now I have only 4 but when I will have 20, I?ll >>> get bored quite rapidly] >>> >>> Sorry if this sounds easy, I am still learning the basics of R >>> >>> Marco >>> ______________________________ >>> Marco Blanchette, Ph.D. >>> >>> mblanche at uclink.berkeley.edu >>> >>> Donald C. Rio's lab >>> Department of Molecular and Cell Biology >>> 16 Barker Hall >>> University of California >>> Berkeley, CA 94720-3204 >>> >>> Tel: (510) 642-1084 >>> Cell: (510) 847-0996 >>> Fax: (510) 642-6062 >> >> >> ______________________________________________________ >> >> The contents of this e-mail are privileged and/or confidenti...{{dropped}} >> >> _______________________________________________ >> Bioconductor mailing list >> Bioconductor at stat.math.ethz.ch >> https://stat.ethz.ch/mailman/listinfo/bioconductor >> Search the archives: >> http://news.gmane.org/gmane.science.biology.informatics.conductor > ______________________________ Marco Blanchette, Ph.D. mblanche at uclink.berkeley.edu Donald C. Rio's lab Department of Molecular and Cell Biology 16 Barker Hall University of California Berkeley, CA 94720-3204 Tel: (510) 642-1084 Cell: (510) 847-0996 Fax: (510) 642-6062 --
ADD REPLY
0
Entering edit mode
Hi Marco, 1) have a look at "rowMeans" 2) have a look at the functions "cut" and "split" x = rnorm(100) ct = cut(rank(x), 10) sp = split(x, ct) boxplot(sp) Cheers Wolfgang > Hum... This exemplified my hate-love relationship that I have with R... Very > powerful, but very difficult to master... > > One more issue. Each experiments are in duplicates (2 experiments, 2 > replicates -> 4 arrays). My goal is to partition the distribution in genes > in the 10% top most expressed, 10% to 20% most expressed, 20% to 30% most > expressed, and so on. > > eset is my exprSet object containing the rma computed expression for each > gene on the 4 arrays: >> eset > Expression Set (exprSet) with > 18952 genes > 4 samples > phenoData object with 1 variables and 4 cases > varLabels > sample: arbitrary numbering > > So I need to: > > 1) Get the average expression for each gene from the 2 replicates > Would you do: >> exp1 = iter(eset[,1,2], , mean) >> exp2 = iter(eset[,2,3], , mean) > > Or is there a better way? > > 2) Break down the distribution per 10% bin as in >> top10 = geneNames(eset)[(rank(exp1) >= 0*(length(exp1)/10) & rank(exp1) < > 1*(length(exp1)/10))] >> top10_20 = geneNames(eset)[(rank(exp1) >= 1*(length(exp1)/10) & rank(exp1) < > 2*(length(exp1)/10))] > top20_30 = geneNames(eset)[(rank(exp1) >= 2*(length(exp1)/10) & rank(exp1) < > 3*(length(exp1)/10))] > > Or is there a better way? [I'm pretty sure there a more R elegant way than > that...] > > Many thanks folks > > Cheers, > > Marco > > > On 7/26/06 4:05 PM, "Ben Bolstad" <bmb at="" bmbolstad.com=""> wrote: > >> Actually you need affyPLM loaded to boxplot an exprSet. affy only >> provides the method for AffyBatch objects. Otherwise your example is >> correct. >> >> Best, >> >> Ben >> >> >> eg ..... >> >>> library(affy) >> Loading required package: Biobase >> Loading required package: tools >> >> Welcome to Bioconductor >> >> >> Vignettes contain introductory material. >> >> To view, simply type 'openVignette()' or start with 'help(Biobase)'. >> >> For details on reading vignettes, see the openVignette help page. >> >> >> Loading required package: affyio >>> library(affydata) >>> data(Dilution) >>> eset <- rma(Dilution) >> Background correcting >> Normalizing >> Calculating Expression >>> boxplot(eset) # throws error >> Error in boxplot.default(eset) : invalid first argument >>> library(affyPLM) >> Loading required package: gcrma >> Loading required package: matchprobes >>> boxplot(eset) #works fine. >> >> >> >> >> >> >> >> On Thu, 2006-07-27 at 10:58 +1200, Marcus Davy wrote: >>> P 17 of the vignette("affy"). >>> >>> e.g. >>> >>> chipCols <- rainbow(ncol(exprs(affybatch.example))) >>> boxplot(affybatch.example, col=chipCols) >>> >>> Marcus >>> >>> >>> On 7/27/06 10:40 AM, "Marco Blanchette" <mblanche at="" berkeley.edu=""> wrote: >>> >>>> Thank you all, >>>> >>>> Using bioclite to download the annotation fixed the problem. >>>> >>>> Now, I am getting into simpler R problem. I have an exprSet object of 4 >>>> arrays: >>>>> eset >>>> Expression Set (exprSet) with >>>> 18952 genes >>>> 4 samples >>>> phenoData object with 1 variables and 4 cases >>>> varLabels >>>> sample: arbitrary numbering >>>> >>>> My goal is to draw a boxplot of the 4 different samples. Surely I can do: >>>>> boxplot (exprs(eset)[,1], exprs(eset)[,2], exprs(eset)[,3], >>>>> exprs(eset)[,4], >>>> col=c(2,3,4,5)) >>>> >>>> But is there an easier way to do with without having to subscript each >>>> individual column? [right now I have only 4 but when I will have 20, I?ll >>>> get bored quite rapidly] >>>> >>>> Sorry if this sounds easy, I am still learning the basics of R >>>> >>>> Marco >>>> ______________________________ >>>> Marco Blanchette, Ph.D. >>>> >>>> mblanche at uclink.berkeley.edu >>>> >>>> Donald C. Rio's lab >>>> Department of Molecular and Cell Biology >>>> 16 Barker Hall >>>> University of California >>>> Berkeley, CA 94720-3204 >>>> >>>> Tel: (510) 642-1084 >>>> Cell: (510) 847-0996 >>>> Fax: (510) 642-6062 >>> >>> ______________________________________________________ >>> >>> The contents of this e-mail are privileged and/or confidenti...{{dropped}} >>> >>> _______________________________________________ >>> Bioconductor mailing list >>> Bioconductor at stat.math.ethz.ch >>> https://stat.ethz.ch/mailman/listinfo/bioconductor >>> Search the archives: >>> http://news.gmane.org/gmane.science.biology.informatics.conductor > > ______________________________ > Marco Blanchette, Ph.D. > > mblanche at uclink.berkeley.edu > > Donald C. Rio's lab > Department of Molecular and Cell Biology > 16 Barker Hall > University of California > Berkeley, CA 94720-3204 > > Tel: (510) 642-1084 > Cell: (510) 847-0996 > Fax: (510) 642-6062 > -- > > _______________________________________________ > Bioconductor mailing list > Bioconductor at stat.math.ethz.ch > https://stat.ethz.ch/mailman/listinfo/bioconductor > Search the archives: http://news.gmane.org/gmane.science.biology.informatics.conductor -- ------------------------------------------------------------------ Wolfgang Huber EBI/EMBL Cambridge UK http://www.ebi.ac.uk/huber
ADD REPLY
0
Entering edit mode
Can't find any info on rawMeans: > ?rawMeans No documentation for 'rawMeans' in specified packages and libraries: you could try 'help.search("rawMeans")' On 7/27/06 2:00 AM, "Wolfgang Huber" <huber at="" ebi.ac.uk=""> wrote: > Hi Marco, > > 1) have a look at "rowMeans" > > 2) have a look at the functions "cut" and "split" > > x = rnorm(100) > ct = cut(rank(x), 10) > sp = split(x, ct) > boxplot(sp) > > > Cheers > Wolfgang > >> Hum... This exemplified my hate-love relationship that I have with R... Very >> powerful, but very difficult to master... >> >> One more issue. Each experiments are in duplicates (2 experiments, 2 >> replicates -> 4 arrays). My goal is to partition the distribution in genes >> in the 10% top most expressed, 10% to 20% most expressed, 20% to 30% most >> expressed, and so on. >> >> eset is my exprSet object containing the rma computed expression for each >> gene on the 4 arrays: >>> eset >> Expression Set (exprSet) with >> 18952 genes >> 4 samples >> phenoData object with 1 variables and 4 cases >> varLabels >> sample: arbitrary numbering >> >> So I need to: >> >> 1) Get the average expression for each gene from the 2 replicates >> Would you do: >>> exp1 = iter(eset[,1,2], , mean) >>> exp2 = iter(eset[,2,3], , mean) >> >> Or is there a better way? >> >> 2) Break down the distribution per 10% bin as in >>> top10 = geneNames(eset)[(rank(exp1) >= 0*(length(exp1)/10) & rank(exp1) < >> 1*(length(exp1)/10))] >>> top10_20 = geneNames(eset)[(rank(exp1) >= 1*(length(exp1)/10) & rank(exp1) < >> 2*(length(exp1)/10))] >> top20_30 = geneNames(eset)[(rank(exp1) >= 2*(length(exp1)/10) & rank(exp1) < >> 3*(length(exp1)/10))] >> >> Or is there a better way? [I'm pretty sure there a more R elegant way than >> that...] >> >> Many thanks folks >> >> Cheers, >> >> Marco >> >> >> On 7/26/06 4:05 PM, "Ben Bolstad" <bmb at="" bmbolstad.com=""> wrote: >> >>> Actually you need affyPLM loaded to boxplot an exprSet. affy only >>> provides the method for AffyBatch objects. Otherwise your example is >>> correct. >>> >>> Best, >>> >>> Ben >>> >>> >>> eg ..... >>> >>>> library(affy) >>> Loading required package: Biobase >>> Loading required package: tools >>> >>> Welcome to Bioconductor >>> >>> >>> Vignettes contain introductory material. >>> >>> To view, simply type 'openVignette()' or start with 'help(Biobase)'. >>> >>> For details on reading vignettes, see the openVignette help page. >>> >>> >>> Loading required package: affyio >>>> library(affydata) >>>> data(Dilution) >>>> eset <- rma(Dilution) >>> Background correcting >>> Normalizing >>> Calculating Expression >>>> boxplot(eset) # throws error >>> Error in boxplot.default(eset) : invalid first argument >>>> library(affyPLM) >>> Loading required package: gcrma >>> Loading required package: matchprobes >>>> boxplot(eset) #works fine. >>> >>> >>> >>> >>> >>> >>> >>> On Thu, 2006-07-27 at 10:58 +1200, Marcus Davy wrote: >>>> P 17 of the vignette("affy"). >>>> >>>> e.g. >>>> >>>> chipCols <- rainbow(ncol(exprs(affybatch.example))) >>>> boxplot(affybatch.example, col=chipCols) >>>> >>>> Marcus >>>> >>>> >>>> On 7/27/06 10:40 AM, "Marco Blanchette" <mblanche at="" berkeley.edu=""> wrote: >>>> >>>>> Thank you all, >>>>> >>>>> Using bioclite to download the annotation fixed the problem. >>>>> >>>>> Now, I am getting into simpler R problem. I have an exprSet object of 4 >>>>> arrays: >>>>>> eset >>>>> Expression Set (exprSet) with >>>>> 18952 genes >>>>> 4 samples >>>>> phenoData object with 1 variables and 4 cases >>>>> varLabels >>>>> sample: arbitrary numbering >>>>> >>>>> My goal is to draw a boxplot of the 4 different samples. Surely I can do: >>>>>> boxplot (exprs(eset)[,1], exprs(eset)[,2], exprs(eset)[,3], >>>>>> exprs(eset)[,4], >>>>> col=c(2,3,4,5)) >>>>> >>>>> But is there an easier way to do with without having to subscript each >>>>> individual column? [right now I have only 4 but when I will have 20, I?ll >>>>> get bored quite rapidly] >>>>> >>>>> Sorry if this sounds easy, I am still learning the basics of R >>>>> >>>>> Marco >>>>> ______________________________ >>>>> Marco Blanchette, Ph.D. >>>>> >>>>> mblanche at uclink.berkeley.edu >>>>> >>>>> Donald C. Rio's lab >>>>> Department of Molecular and Cell Biology >>>>> 16 Barker Hall >>>>> University of California >>>>> Berkeley, CA 94720-3204 >>>>> >>>>> Tel: (510) 642-1084 >>>>> Cell: (510) 847-0996 >>>>> Fax: (510) 642-6062 >>>> >>>> ______________________________________________________ >>>> >>>> The contents of this e-mail are privileged and/or confidenti...{{dropped}} >>>> >>>> _______________________________________________ >>>> Bioconductor mailing list >>>> Bioconductor at stat.math.ethz.ch >>>> https://stat.ethz.ch/mailman/listinfo/bioconductor >>>> Search the archives: >>>> http://news.gmane.org/gmane.science.biology.informatics.conductor >> >> ______________________________ >> Marco Blanchette, Ph.D. >> >> mblanche at uclink.berkeley.edu >> >> Donald C. Rio's lab >> Department of Molecular and Cell Biology >> 16 Barker Hall >> University of California >> Berkeley, CA 94720-3204 >> >> Tel: (510) 642-1084 >> Cell: (510) 847-0996 >> Fax: (510) 642-6062 >> -- >> >> _______________________________________________ >> Bioconductor mailing list >> Bioconductor at stat.math.ethz.ch >> https://stat.ethz.ch/mailman/listinfo/bioconductor >> Search the archives: >> http://news.gmane.org/gmane.science.biology.informatics.conductor > Marco Blanchette, Ph.D. mblanche at berkeley.edu Donald C. Rio's lab Department of Molecular and Cell Biology 16 Barker Hall University of California Berkeley, CA 94720-3204 Tel: (510) 642-1084 Cell: (510) 847-0996 Fax: (510) 642-6062
ADD REPLY
0
Entering edit mode
Hi Marco, you made a little typo, the function is rowMeans, not rawMeans. Francois On Thu, 2006-07-27 at 10:54 -0700, Marco Blanchette wrote: > Can't find any info on rawMeans: > > > ?rawMeans > No documentation for 'rawMeans' in specified packages and libraries: > you could try 'help.search("rawMeans")' > > > On 7/27/06 2:00 AM, "Wolfgang Huber" <huber at="" ebi.ac.uk=""> wrote: > > > Hi Marco, > > > > 1) have a look at "rowMeans" > > > > 2) have a look at the functions "cut" and "split" > > > > x = rnorm(100) > > ct = cut(rank(x), 10) > > sp = split(x, ct) > > boxplot(sp) > > > > > > Cheers > > Wolfgang > > > >> Hum... This exemplified my hate-love relationship that I have with R... Very > >> powerful, but very difficult to master... > >> > >> One more issue. Each experiments are in duplicates (2 experiments, 2 > >> replicates -> 4 arrays). My goal is to partition the distribution in genes > >> in the 10% top most expressed, 10% to 20% most expressed, 20% to 30% most > >> expressed, and so on. > >> > >> eset is my exprSet object containing the rma computed expression for each > >> gene on the 4 arrays: > >>> eset > >> Expression Set (exprSet) with > >> 18952 genes > >> 4 samples > >> phenoData object with 1 variables and 4 cases > >> varLabels > >> sample: arbitrary numbering > >> > >> So I need to: > >> > >> 1) Get the average expression for each gene from the 2 replicates > >> Would you do: > >>> exp1 = iter(eset[,1,2], , mean) > >>> exp2 = iter(eset[,2,3], , mean) > >> > >> Or is there a better way? > >> > >> 2) Break down the distribution per 10% bin as in > >>> top10 = geneNames(eset)[(rank(exp1) >= 0*(length(exp1)/10) & rank(exp1) < > >> 1*(length(exp1)/10))] > >>> top10_20 = geneNames(eset)[(rank(exp1) >= 1*(length(exp1)/10) & rank(exp1) < > >> 2*(length(exp1)/10))] > >> top20_30 = geneNames(eset)[(rank(exp1) >= 2*(length(exp1)/10) & rank(exp1) < > >> 3*(length(exp1)/10))] > >> > >> Or is there a better way? [I'm pretty sure there a more R elegant way than > >> that...] > >> > >> Many thanks folks > >> > >> Cheers, > >> > >> Marco > >> > >> > >> On 7/26/06 4:05 PM, "Ben Bolstad" <bmb at="" bmbolstad.com=""> wrote: > >> > >>> Actually you need affyPLM loaded to boxplot an exprSet. affy only > >>> provides the method for AffyBatch objects. Otherwise your example is > >>> correct. > >>> > >>> Best, > >>> > >>> Ben > >>> > >>> > >>> eg ..... > >>> > >>>> library(affy) > >>> Loading required package: Biobase > >>> Loading required package: tools > >>> > >>> Welcome to Bioconductor > >>> > >>> > >>> Vignettes contain introductory material. > >>> > >>> To view, simply type 'openVignette()' or start with 'help(Biobase)'. > >>> > >>> For details on reading vignettes, see the openVignette help page. > >>> > >>> > >>> Loading required package: affyio > >>>> library(affydata) > >>>> data(Dilution) > >>>> eset <- rma(Dilution) > >>> Background correcting > >>> Normalizing > >>> Calculating Expression > >>>> boxplot(eset) # throws error > >>> Error in boxplot.default(eset) : invalid first argument > >>>> library(affyPLM) > >>> Loading required package: gcrma > >>> Loading required package: matchprobes > >>>> boxplot(eset) #works fine. > >>> > >>> > >>> > >>> > >>> > >>> > >>> > >>> On Thu, 2006-07-27 at 10:58 +1200, Marcus Davy wrote: > >>>> P 17 of the vignette("affy"). > >>>> > >>>> e.g. > >>>> > >>>> chipCols <- rainbow(ncol(exprs(affybatch.example))) > >>>> boxplot(affybatch.example, col=chipCols) > >>>> > >>>> Marcus > >>>> > >>>> > >>>> On 7/27/06 10:40 AM, "Marco Blanchette" <mblanche at="" berkeley.edu=""> wrote: > >>>> > >>>>> Thank you all, > >>>>> > >>>>> Using bioclite to download the annotation fixed the problem. > >>>>> > >>>>> Now, I am getting into simpler R problem. I have an exprSet object of 4 > >>>>> arrays: > >>>>>> eset > >>>>> Expression Set (exprSet) with > >>>>> 18952 genes > >>>>> 4 samples > >>>>> phenoData object with 1 variables and 4 cases > >>>>> varLabels > >>>>> sample: arbitrary numbering > >>>>> > >>>>> My goal is to draw a boxplot of the 4 different samples. Surely I can do: > >>>>>> boxplot (exprs(eset)[,1], exprs(eset)[,2], exprs(eset)[,3], > >>>>>> exprs(eset)[,4], > >>>>> col=c(2,3,4,5)) > >>>>> > >>>>> But is there an easier way to do with without having to subscript each > >>>>> individual column? [right now I have only 4 but when I will have 20, I?ll > >>>>> get bored quite rapidly] > >>>>> > >>>>> Sorry if this sounds easy, I am still learning the basics of R > >>>>> > >>>>> Marco > >>>>> ______________________________ > >>>>> Marco Blanchette, Ph.D. > >>>>> > >>>>> mblanche at uclink.berkeley.edu > >>>>> > >>>>> Donald C. Rio's lab > >>>>> Department of Molecular and Cell Biology > >>>>> 16 Barker Hall > >>>>> University of California > >>>>> Berkeley, CA 94720-3204 > >>>>> > >>>>> Tel: (510) 642-1084 > >>>>> Cell: (510) 847-0996 > >>>>> Fax: (510) 642-6062 > >>>> > >>>> ______________________________________________________ > >>>> > >>>> The contents of this e-mail are privileged and/or confidenti...{{dropped}} > >>>> > >>>> _______________________________________________ > >>>> Bioconductor mailing list > >>>> Bioconductor at stat.math.ethz.ch > >>>> https://stat.ethz.ch/mailman/listinfo/bioconductor > >>>> Search the archives: > >>>> http://news.gmane.org/gmane.science.biology.informatics.conductor > >> > >> ______________________________ > >> Marco Blanchette, Ph.D. > >> > >> mblanche at uclink.berkeley.edu > >> > >> Donald C. Rio's lab > >> Department of Molecular and Cell Biology > >> 16 Barker Hall > >> University of California > >> Berkeley, CA 94720-3204 > >> > >> Tel: (510) 642-1084 > >> Cell: (510) 847-0996 > >> Fax: (510) 642-6062 > >> -- > >> > >> _______________________________________________ > >> Bioconductor mailing list > >> Bioconductor at stat.math.ethz.ch > >> https://stat.ethz.ch/mailman/listinfo/bioconductor > >> Search the archives: > >> http://news.gmane.org/gmane.science.biology.informatics.conductor > > > > > Marco Blanchette, Ph.D. > > mblanche at berkeley.edu > > Donald C. Rio's lab > Department of Molecular and Cell Biology > 16 Barker Hall > University of California > Berkeley, CA 94720-3204 > > Tel: (510) 642-1084 > Cell: (510) 847-0996 > Fax: (510) 642-6062 > > _______________________________________________ > Bioconductor mailing list > Bioconductor at stat.math.ethz.ch > https://stat.ethz.ch/mailman/listinfo/bioconductor > Search the archives: http://news.gmane.org/gmane.science.biology.informatics.conductor >
ADD REPLY
0
Entering edit mode
You don't really need affyPLM. The problem is that the boxplot method for a matrix just gives you one big box, instead of a boxplot for each column. However, the boxplot method for a data.frame _will_ give you a box for each column. boxplot(as.data.frame(exprs(eset))) Best, Jim Ben Bolstad wrote: > Actually you need affyPLM loaded to boxplot an exprSet. affy only > provides the method for AffyBatch objects. Otherwise your example is > correct. > > Best, > > Ben > > > eg ..... > > >>library(affy) > > Loading required package: Biobase > Loading required package: tools > > Welcome to Bioconductor > > > Vignettes contain introductory material. > > To view, simply type 'openVignette()' or start with 'help(Biobase)'. > > For details on reading vignettes, see the openVignette help page. > > > Loading required package: affyio > >>library(affydata) >>data(Dilution) >>eset <- rma(Dilution) > > Background correcting > Normalizing > Calculating Expression > >>boxplot(eset) # throws error > > Error in boxplot.default(eset) : invalid first argument > >>library(affyPLM) > > Loading required package: gcrma > Loading required package: matchprobes > >>boxplot(eset) #works fine. > > > > > > > > > > On Thu, 2006-07-27 at 10:58 +1200, Marcus Davy wrote: > >>P 17 of the vignette("affy"). >> >>e.g. >> >>chipCols <- rainbow(ncol(exprs(affybatch.example))) >>boxplot(affybatch.example, col=chipCols) >> >>Marcus >> >> >>On 7/27/06 10:40 AM, "Marco Blanchette" <mblanche at="" berkeley.edu=""> wrote: >> >> >>>Thank you all, >>> >>>Using bioclite to download the annotation fixed the problem. >>> >>>Now, I am getting into simpler R problem. I have an exprSet object of 4 >>>arrays: >>> >>>>eset >>> >>>Expression Set (exprSet) with >>> 18952 genes >>> 4 samples >>> phenoData object with 1 variables and 4 cases >>> varLabels >>> sample: arbitrary numbering >>> >>>My goal is to draw a boxplot of the 4 different samples. Surely I can do: >>> >>>>boxplot (exprs(eset)[,1], exprs(eset)[,2], exprs(eset)[,3], exprs(eset)[,4], >>> >>>col=c(2,3,4,5)) >>> >>>But is there an easier way to do with without having to subscript each >>>individual column? [right now I have only 4 but when I will have 20, I?ll >>>get bored quite rapidly] >>> >>>Sorry if this sounds easy, I am still learning the basics of R >>> >>>Marco >>>______________________________ >>>Marco Blanchette, Ph.D. >>> >>>mblanche at uclink.berkeley.edu >>> >>>Donald C. Rio's lab >>>Department of Molecular and Cell Biology >>>16 Barker Hall >>>University of California >>>Berkeley, CA 94720-3204 >>> >>>Tel: (510) 642-1084 >>>Cell: (510) 847-0996 >>>Fax: (510) 642-6062 >> >> >>______________________________________________________ >> >>The contents of this e-mail are privileged and/or confidenti...{{dropped}} >> >>_______________________________________________ >>Bioconductor mailing list >>Bioconductor at stat.math.ethz.ch >>https://stat.ethz.ch/mailman/listinfo/bioconductor >>Search the archives: http://news.gmane.org/gmane.science.biology.informatics.conductor > > > _______________________________________________ > Bioconductor mailing list > Bioconductor at stat.math.ethz.ch > https://stat.ethz.ch/mailman/listinfo/bioconductor > Search the archives: http://news.gmane.org/gmane.science.biology.informatics.conductor -- James W. MacDonald, M.S. Biostatistician Affymetrix and cDNA Microarray Core University of Michigan Cancer Center 1500 E. Medical Center Drive 7410 CCGC Ann Arbor MI 48109 734-647-5623 ********************************************************** Electronic Mail is not secure, may not be read every day, and should not be used for urgent or sensitive issues.
ADD REPLY

Login before adding your answer.

Traffic: 996 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6