Entering edit mode
David
▴
860
@david-3335
Last seen 6.7 years ago
Hi,
I have the following matrix with normalized log2 values:
CondA CondB CondC CondD CondE
geneA -6.19 -5.74 -5.82 -5 -5.59
geneB -6.33 -5.32 -5.6 -4.88 -5.39
geneC -6.15 -6.07 -5.6 -4.88 -5.9
geneD -6.57 -6.11 -6.36 -5.36 -5.96
geneD -6.74 -6.2 -5.49 -5.35 -5.95
geneE -6.75 -6.24 -5.73 -5.63 -6.02
Created as follows:
geneA<-c(-6.19, -5.74, -5.82, -5, -5.59)
geneB<-c(-6.33, -5.32, -5.6, -4.88, -5.39)
geneC<-c(-6.15, -6.07, -5.6, -4.88, -5.9)
geneD<-c(-6.57, -6.11, -6.36, -5.36, -5.96)
geneD<-c(-6.74, -6.2, -5.49, -5.35, -5.95)
geneE<-c(-6.75, -6.24, -5.73, -5.63, -6.02)
mygenes<-rbind(geneA, geneB, geneC, geneD, geneE)
colnames(mygenes)<-c("CondA", "CondB", "CondC", "CondD",
"CondE")
I'm looking for most stable pair genes across conditions. I'm not
looking for individual gene variance but really for most stable pairs
ratios.
For e.g What is the variance of geneA vs geneB across all conditions.
What is the most stable pair ?
Any help would be appreciated.
david