maping SNPs
1
0
Entering edit mode
SimonNoël ▴ 450
@simonnoel-3455
Last seen 10.2 years ago
Hi, I have a really big list of SNPs names like : SNPNAME rs7547453 rs2840542 rs1999527 rs4648545 rs10915459 rs16838750 rs12128230 ... I woudlike to map them to their official gene symbol. What the best way to procede? Simon No??l CdeC
• 955 views
ADD COMMENT
0
Entering edit mode
@herve-pages-1542
Last seen 2 hours ago
Seattle, WA, United States
Hi Simon, On 12/03/2010 10:17 AM, Simon No?l wrote: > > Hi, > > > > I have a really big list of SNPs names like : > > > > SNPNAME > > rs7547453 > > rs2840542 > > rs1999527 > > rs4648545 > > rs10915459 > > rs16838750 > > rs12128230 > > ... > > > > I woudlike to map them to their official gene symbol. What the best way to > procede? Those ids look like RefSNP ids. AFAIK dbSNP doesn't provide mappings from SNPs to genes and I don't think we have this kind of mappings either in our collection of annotations (*.db packages). But if your SNPs are Human then you can do the mapping yourself by using a SNPlocs.Hsapies.dbSNP.* package and the GenomicFeatures packages. The latest SNPlocs.Hsapies.dbSNP.* package is SNPlocs.Hsapiens.dbSNP.20101109 (dbSNP Build 132): it contains SNP locations relative to the GRCh37 genome: > library(SNPlocs.Hsapiens.dbSNP.20101109) > getSNPcount() ch1 ch2 ch3 ch4 ch5 ch6 ch7 ch8 ch9 ch10 1849438 1936836 1613418 1613633 1453710 1446827 1335745 1243129 995075 1158707 ch11 ch12 ch13 ch14 ch15 ch16 ch17 ch18 ch19 ch20 1147722 1105364 815729 740129 657719 757926 641905 645646 520666 586708 ch21 ch22 chX chY chMT 338254 331060 529608 67438 624 Note that it doesn't contain *all* SNPs from dbSNP Build 132: only a subset of "clean" SNPs (see ?SNPlocs.Hsapiens.dbSNP.20101109 for the details). > ch22snps <- getSNPlocs("ch22") > ch22snps[1:5, ] RefSNP_id alleles_as_ambig loc 1 56342815 K 16050353 2 7288968 S 16050994 3 6518357 M 16051107 4 7292503 R 16051209 5 6518368 Y 16051241 Note that the rs prefix has been dropped. So here is how to proceed: First you can use the following function to make a GRanges object from your SNP ids: makeGRangesFromRefSNPids <- function(myids) { ans_seqnames <- character(length(myids)) ans_seqnames[] <- "unknown" ans_locs <- integer(length(myids)) for (seqname in names(getSNPcount())) { locs <- getSNPlocs(seqname) ids <- paste("rs", locs$RefSNP_id, sep="") myrows <- match(myids, ids) ans_seqnames[!is.na(myrows)] <- seqname ans_locs[!is.na(myrows)] <- locs$loc[myrows] } GRanges(seqnames=ans_seqnames, IRanges(start=ans_locs, width=1), RefSNP_id=myids) } This takes between 3 and 5 minutes: > myids <- c("rs7547453", "rs2840542", "rs1999527", "rs4648545", "rs10915459", "rs16838750", "rs12128230", "rs999999999") > mysnps <- makeGRangesFromRefSNPids(myids) > mysnps # a GRanges object with 1 SNP per row GRanges with 8 ranges and 1 elementMetadata value seqnames ranges strand | myids <rle> <iranges> <rle> | <character> [1] ch1 [2195117, 2195117] * | rs7547453 [2] ch1 [2291680, 2291680] * | rs2840542 [3] ch1 [3256108, 3256108] * | rs1999527 [4] ch1 [3577321, 3577321] * | rs4648545 [5] ch1 [4230463, 4230463] * | rs10915459 [6] ch1 [4404344, 4404344] * | rs16838750 [7] ch1 [4501911, 4501911] * | rs12128230 [8] unknown [ 0, 0] * | rs999999999 seqlengths ch1 unknown NA NA The next step is to create a TranscriptDb object with makeTranscriptDbFromUCSC() or makeTranscriptDbFromBiomart() from the GenomicFeatures package. This TranscriptDb object will contain the transcript locations and their associated genes extracted from the annotation source you choose. For example, if you want to use RefSeq genes: ## Takes about 3 minutes: > txdb <- makeTranscriptDbFromUCSC(genome="hg19", tablename="refGene") > txdb TranscriptDb object: | Db type: TranscriptDb | Data source: UCSC | Genome: hg19 | UCSC Table: refGene | Type of Gene ID: Entrez Gene ID | Full dataset: yes | transcript_nrow: 37924 | exon_nrow: 230024 | cds_nrow: 204571 | Db created by: GenomicFeatures package from Bioconductor | Creation time: 2010-12-05 19:41:40 -0800 (Sun, 05 Dec 2010) | GenomicFeatures version at creation time: 1.2.2 | RSQLite version at creation time: 0.9-4 | DBSCHEMAVERSION: 1.0 Note the type of gene IDs (Entrez Gene ID) stored in this TranscriptDb object: this means that later you will be able to use the org.Hs.eg.db package to map your gene ids to their symbol (the org.*.eg.db packages are Entrez Gene ID centric). To extract the transcript locations together with their genes: > tx <- transcripts(txdb, columns=c("tx_id", "tx_name", "gene_id")) > tx # a GRanges object with 1 transcript per row GRanges with 37924 ranges and 1 elementMetadata value seqnames ranges strand | gene_id <rle> <iranges> <rle> | <compressedcharacterlist> [1] chr1 [ 69091, 70008] + | 79501 [2] chr1 [323892, 328581] + | 100133331 [3] chr1 [323892, 328581] + | 100132287 [4] chr1 [323892, 328581] + | 100132062 [5] chr1 [367659, 368597] + | 81399 [6] chr1 [367659, 368597] + | 729759 [7] chr1 [367659, 368597] + | 26683 [8] chr1 [763064, 789740] + | 643837 [9] chr1 [861121, 879961] + | 148398 ... ... ... ... ... ... [37916] chrY [27177050, 27198251] - | 9083 [37917] chrY [27177050, 27198251] - | 442867 [37918] chrY [27177050, 27198251] - | 442868 [37919] chrY [27209230, 27246039] - | 114761 [37920] chrY [27209230, 27246039] - | 474150 [37921] chrY [27209230, 27246039] - | 474149 [37922] chrY [27329790, 27330920] - | 252949 [37923] chrY [27329790, 27330920] - | 474152 [37924] chrY [27329790, 27330920] - | 474151 seqlengths chr1 chr2 ... chr18_gl000207_random 249250621 243199373 ... 4262 Now you can use findOverlaps() on 'mysnps' and 'tx' to find the transcripts hits by your snps. But before you can do this, you need to rename the sequences in 'mysnps' because dbSNPs and UCSC use different naming conventions for the chromosomes: > seqnames(mysnps) <- sub("ch", "chr", seqnames(mysnps)) Then: > map <- as.matrix(findOverlaps(mysnps, tx)) 'map' contains the mapping between your SNPs and their genes but not in a readable form (this matrix contains indices) so we make the 'snp2gene' data frame with 2 cols: 1 for your SNP ids and 1 for the associated gene ids: > mapped_genes <- values(tx)$gene_id[map[, 2]] > mapped_snps <- rep.int(values(mysnps)$myids[map[, 1]], elementLengths(mapped_genes)) > snp2gene <- unique(data.frame(snp_id=mapped_snps, gene_id=unlist(mapped_genes))) > rownames(snp2gene) <- NULL > snp2gene[1:4, ] snp_id gene_id 1 rs7547453 6497 2 rs2840542 79906 3 rs1999527 63976 4 rs4648545 7161 Note that there is no guarantee that the number of rows in this data frame is the number of your original SNP ids because the relation between SNP ids and gene ids is of course not one-to-one. Also the method described above considers that a SNP hits a gene if it's located between the start and the end of one of its transcripts but it doesn't take in account the exon structure of the transcripts. If you want to do this you need to use exonsBy() (from GenomicFeatures) to extract the exons grouped by transcripts (this will be stored in a GRangesList object) and use this object instead of 'tx' in the call to findOverlaps(). Hope this helps, H. > > > > Simon No??l > CdeC > _______________________________________________ > Bioconductor mailing list > Bioconductor at r-project.org > https://stat.ethz.ch/mailman/listinfo/bioconductor > Search the archives: http://news.gmane.org/gmane.science.biology.informatics.conductor -- Hervé Pagès Program in Computational Biology Division of Public Health Sciences Fred Hutchinson Cancer Research Center 1100 Fairview Ave. N, M2-B876 P.O. Box 19024 Seattle, WA 98109-1024 E-mail: hpages at fhcrc.org Phone: (206) 667-5791 Fax: (206) 667-1319
ADD COMMENT
0
Entering edit mode
Hello, Sorry to be slow for a response. What you say that should take 3-5 min took 3-5 days... I don't have the best computer in the world. We do have a supercomputer but even if it's the same version of R and package than my litle computer, it's not working... Well... It's not working on my computer to but not at the same place. We both have R 2.12.0 and the lastest version of every package. Here is what I have. I have try with the test you sugested. On the supercomputer : > getSNPcount() ch1 ch2 ch3 ch4 ch5 ch6 ch7 ch8 ch9 ch10 1849438 1936836 1613418 1613633 1453710 1446827 1335745 1243129 995075 1158707 ch11 ch12 ch13 ch14 ch15 ch16 ch17 ch18 ch19 ch20 1147722 1105364 815729 740129 657719 757926 641905 645646 520666 586708 ch21 ch22 chX chY chMT 338254 331060 529608 67438 624 > ch22snps <- getSNPlocs("ch22") > ch22snps[1:5, ] RefSNP_id alleles_as_ambig loc 1 56342815 K 16050353 2 7288968 S 16050994 3 6518357 M 16051107 4 7292503 R 16051209 5 6518368 Y 16051241 > > > makeGRangesFromRefSNPids <- function(myids) + { + ans_seqnames <- character(length(myids)) + ans_seqnames[] <- "unknown" + ans_locs <- integer(length(myids)) + for (seqname in names(getSNPcount())) { + locs <- getSNPlocs(seqname) + ids <- paste("rs", locs$RefSNP_id, sep="") + myrows <- match(myids, ids) + ans_seqnames[!is.na(myrows)] <- seqname + ans_locs[!is.na(myrows)] <- locs$loc[myrows] + } + GRanges(seqnames=ans_seqnames, + IRanges(start=ans_locs, width=1), + RefSNP_id=myids) + } > > > myids <- c("rs7547453", "rs2840542", "rs1999527", "rs4648545", "rs10915459", "rs16838750", "rs12128230", "rs999999999") > mysnps <- makeGRangesFromRefSNPids(myids) Warning message: In ans_locs[!is.na(myrows)] <- locs$loc[myrows] : number of items to replace is not a multiple of replacement length > mysnps # a GRanges object with 1 SNP per row GRangeswith 8 ranges and 1 elementMetadata value seqnames ranges strand | RefSNP_id <rle> <iranges> <rle> | <character> [1] ch1 [2195117, 2195117] * | rs7547453 [2] ch1 [2291680, 2291680] * | rs2840542 [3] ch1 [3256108, 3256108] * | rs1999527 [4] ch1 [3577321, 3577321] * | rs4648545 [5] ch1 [4230463, 4230463] * | rs10915459 [6] ch1 [4404344, 4404344] * | rs16838750 [7] ch1 [4501911, 4501911] * | rs12128230 [8] unknown [ 0, 0] * | rs999999999 seqlengths ch1 unknown NA NA > txdb <- makeTranscriptDbFromUCSC(genome="hg19", tablename="refGene") Downloadthe refGene table ... OK Downloadthe refLink table ... OK Extractthe 'transcripts' data frame ... OK Extractthe 'splicings' data frame ... OK Downloadand preprocess the 'chrominfo' data frame ... OK Preparethe 'metadata' data frame ... OK Makethe TranscriptDb object ... Error in .writeMetadataTable(conn, metadata) : subscript out of bounds In addition: There were 50 or more warnings (use warnings() to see the first 50) On my computer : > getSNPcount() ch1 ch2 ch3 ch4 ch5 ch6 ch7 ch8 ch9 ch10 1849438 1936836 1613418 1613633 1453710 1446827 1335745 1243129 995075 1158707 ch11 ch12 ch13 ch14 ch15 ch16 ch17 ch18 ch19 ch20 1147722 1105364 815729 740129 657719 757926 641905 645646 520666 586708 ch21 ch22 chX chY chMT 338254 331060 529608 67438 624 > ch22snps <- getSNPlocs("ch22") > ch22snps[1:5, ] RefSNP_id alleles_as_ambig loc 1 56342815 K 16050353 2 7288968 S 16050994 3 6518357 M 16051107 4 7292503 R 16051209 5 6518368 Y 16051241 > > > makeGRangesFromRefSNPids <- function(myids) + { + ans_seqnames <- character(length(myids)) + ans_seqnames[] <- "unknown" + ans_locs <- integer(length(myids)) + for (seqname in names(getSNPcount())) { + locs <- getSNPlocs(seqname) + ids <- paste("rs", locs$RefSNP_id, sep="") + myrows <- match(myids, ids) + ans_seqnames[!is.na(myrows)] <- seqname + ans_locs[!is.na(myrows)] <- locs$loc[myrows] + } + GRanges(seqnames=ans_seqnames, + IRanges(start=ans_locs, width=1), + RefSNP_id=myids) + } > > > myids <- c("rs7547453", "rs2840542", "rs1999527", "rs4648545", "rs10915459", "rs16838750", "rs12128230", "rs999999999") > mysnps <- makeGRangesFromRefSNPids(myids) Warning message: In ans_locs[!is.na(myrows)] <- locs$loc[myrows] : number of items to replace is not a multiple of replacement length > mysnps # a GRanges object with 1 SNP per row GRangeswith 8 ranges and 1 elementMetadata value seqnames ranges strand | RefSNP_id <rle> <iranges> <rle> | <character> [1] ch1 [2195117, 2195117] * | rs7547453 [2] ch1 [2291680, 2291680] * | rs2840542 [3] ch1 [3256108, 3256108] * | rs1999527 [4] ch1 [3577321, 3577321] * | rs4648545 [5] ch1 [4230463, 4230463] * | rs10915459 [6] ch1 [4404344, 4404344] * | rs16838750 [7] ch1 [4501911, 4501911] * | rs12128230 [8] unknown [ 0, 0] * | rs999999999 seqlengths ch1 unknown NA NA > txdb <- makeTranscriptDbFromUCSC(genome="hg19", tablename="refGene") Downloadthe refGene table ... OK Downloadthe refLink table ... OK Extractthe 'transcripts' data frame ... OK Extractthe 'splicings' data frame ... OK Downloadand preprocess the 'chrominfo' data frame ... OK Preparethe 'metadata' data frame ... OK Makethe TranscriptDb object ... OK Il y a eu 50 avis ou plus (utilisez warnings() pour voir les 50 premiers) > txdb TranscriptDbobject: | Db type: TranscriptDb | Data source: UCSC | Genome: hg19 | UCSC Table: refGene | Type of Gene ID: Entrez Gene ID | Full dataset: yes | transcript_nrow: 38098 | exon_nrow: 230201 | cds_nrow: 204683 | Db created by: GenomicFeatures package from Bioconductor | Creation time: 2010-12-22 09:34:40 -0500 (Wed, 22 Dec 2010) | GenomicFeatures version at creation time: 1.2.3 | RSQLite version at creation time: 0.9-4 | DBSCHEMAVERSION: 1.0 > tx <- transcripts(txdb, columns=c("tx_id", "tx_name", "gene_id")) > tx # a GRanges object with 1 transcript per row GRangeswith 38098 ranges and 3 elementMetadata values seqnames ranges strand | tx_id tx_name <rle> <iranges> <rle> | <integer> <character> [1] chr1 [ 69091, 70008] + | 1021 NM_001005484 [2] chr1 [323892, 328581] + | 1023 NR_028327 [3] chr1 [323892, 328581] + | 1024 NR_028322 [4] chr1 [323892, 328581] + | 1025 NR_028325 [5] chr1 [367659, 368597] + | 1022 NM_001005277 [6] chr1 [367659, 368597] + | 1026 NM_001005221 [7] chr1 [367659, 368597] + | 1027 NM_001005224 [8] chr1 [763064, 789740] + | 174 NR_015368 [9] chr1 [861121, 879961] + | 1035 NM_152486 ... ... ... ... ... ... ... [38090] chrY [27177050, 27198251] - | 18991 NM_004678 [38091] chrY [27177050, 27198251] - | 18992 NM_001002760 [38092] chrY [27177050, 27198251] - | 18993 NM_001002761 [38093] chrY [27209230, 27246039] - | 18994 NR_001525 [38094] chrY [27209230, 27246039] - | 18995 NR_002177 [38095] chrY [27209230, 27246039] - | 18996 NR_002178 [38096] chrY [27329790, 27330920] - | 18997 NR_001526 [38097] chrY [27329790, 27330920] - | 18998 NR_002179 [38098] chrY [27329790, 27330920] - | 18999 NR_002180 gene_id <compressedcharacterlist> [1] 79501 [2] 100133331 [3] 100132287 [4] 100132062 [5] 81399 [6] 729759 [7] 26683 [8] 643837 [9] 148398 ... ... [38090] 9083 [38091] 442867 [38092] 442868 [38093] 114761 [38094] 474150 [38095] 474149 [38096] 252949 [38097] 474152 [38098] 474151 seqlengths chr1 chr2 ... chr18_gl000207_random 249250621 243199373 ... 4262 > seqnames(mysnps) <- sub("ch", "chr", seqnames(mysnps)) > map <- as.matrix(findOverlaps(mysnps, tx)) Warning message : In .local(query, subject, maxgap, minoverlap, type, select, ...) : Only some seqnames from 'query' and 'subject' were not identical > mapped_genes <- values(tx)$gene_id[map[, 2]] > mapped_snps <- rep.int(values(mysnps)$myids[map[, 1]], elementLengths(mapped_genes)) Erreur dans base::rep.int(x, ...) : valeur 'times' incorrecte Simon No?l CdeC ________________________________________ De : Hervé Pagès [hpages at fhcrc.org] Date d'envoi : 5 d?cembre 2010 23:43 ? : Simon No?l Cc : bioconductor at r-project.org Objet : Re: [BioC] maping SNPs Hi Simon, On 12/03/2010 10:17 AM, Simon No?l wrote: > > Hi, > > > > I have a really big list of SNPs names like : > > > > SNPNAME > > rs7547453 > > rs2840542 > > rs1999527 > > rs4648545 > > rs10915459 > > rs16838750 > > rs12128230 > > ... > > > > I woudlike to map them to their official gene symbol. What the best way to > procede? Those ids look like RefSNP ids. AFAIK dbSNP doesn't provide mappings from SNPs to genes and I don't think we have this kind of mappings either in our collection of annotations (*.db packages). But if your SNPs are Human then you can do the mapping yourself by using a SNPlocs.Hsapies.dbSNP.* package and the GenomicFeatures packages. The latest SNPlocs.Hsapies.dbSNP.* package is SNPlocs.Hsapiens.dbSNP.20101109 (dbSNP Build 132): it contains SNP locations relative to the GRCh37 genome: > library(SNPlocs.Hsapiens.dbSNP.20101109) > getSNPcount() ch1 ch2 ch3 ch4 ch5 ch6 ch7 ch8 ch9 ch10 1849438 1936836 1613418 1613633 1453710 1446827 1335745 1243129 995075 1158707 ch11 ch12 ch13 ch14 ch15 ch16 ch17 ch18 ch19 ch20 1147722 1105364 815729 740129 657719 757926 641905 645646 520666 586708 ch21 ch22 chX chY chMT 338254 331060 529608 67438 624 Note that it doesn't contain *all* SNPs from dbSNP Build 132: only a subset of "clean" SNPs (see ?SNPlocs.Hsapiens.dbSNP.20101109 for the details). > ch22snps <- getSNPlocs("ch22") > ch22snps[1:5, ] RefSNP_id alleles_as_ambig loc 1 56342815 K 16050353 2 7288968 S 16050994 3 6518357 M 16051107 4 7292503 R 16051209 5 6518368 Y 16051241 Note that the rs prefix has been dropped. So here is how to proceed: First you can use the following function to make a GRanges object from your SNP ids: makeGRangesFromRefSNPids <- function(myids) { ans_seqnames <- character(length(myids)) ans_seqnames[] <- "unknown" ans_locs <- integer(length(myids)) for (seqname in names(getSNPcount())) { locs <- getSNPlocs(seqname) ids <- paste("rs", locs$RefSNP_id, sep="") myrows <- match(myids, ids) ans_seqnames[!is.na(myrows)] <- seqname ans_locs[!is.na(myrows)] <- locs$loc[myrows] } GRanges(seqnames=ans_seqnames, IRanges(start=ans_locs, width=1), RefSNP_id=myids) } This takes between 3 and 5 minutes: > myids <- c("rs7547453", "rs2840542", "rs1999527", "rs4648545", "rs10915459", "rs16838750", "rs12128230", "rs999999999") > mysnps <- makeGRangesFromRefSNPids(myids) > mysnps # a GRanges object with 1 SNP per row GRanges with 8 ranges and 1 elementMetadata value seqnames ranges strand | myids <rle> <iranges> <rle> | <character> [1] ch1 [2195117, 2195117] * | rs7547453 [2] ch1 [2291680, 2291680] * | rs2840542 [3] ch1 [3256108, 3256108] * | rs1999527 [4] ch1 [3577321, 3577321] * | rs4648545 [5] ch1 [4230463, 4230463] * | rs10915459 [6] ch1 [4404344, 4404344] * | rs16838750 [7] ch1 [4501911, 4501911] * | rs12128230 [8] unknown [ 0, 0] * | rs999999999 seqlengths ch1 unknown NA NA The next step is to create a TranscriptDb object with makeTranscriptDbFromUCSC() or makeTranscriptDbFromBiomart() from the GenomicFeatures package. This TranscriptDb object will contain the transcript locations and their associated genes extracted from the annotation source you choose. For example, if you want to use RefSeq genes: ## Takes about 3 minutes: > txdb <- makeTranscriptDbFromUCSC(genome="hg19", tablename="refGene") > txdb TranscriptDb object: | Db type: TranscriptDb | Data source: UCSC | Genome: hg19 | UCSC Table: refGene | Type of Gene ID: Entrez Gene ID | Full dataset: yes | transcript_nrow: 37924 | exon_nrow: 230024 | cds_nrow: 204571 | Db created by: GenomicFeatures package from Bioconductor | Creation time: 2010-12-05 19:41:40 -0800 (Sun, 05 Dec 2010) | GenomicFeatures version at creation time: 1.2.2 | RSQLite version at creation time: 0.9-4 | DBSCHEMAVERSION: 1.0 Note the type of gene IDs (Entrez Gene ID) stored in this TranscriptDb object: this means that later you will be able to use the org.Hs.eg.db package to map your gene ids to their symbol (the org.*.eg.db packages are Entrez Gene ID centric). To extract the transcript locations together with their genes: > tx <- transcripts(txdb, columns=c("tx_id", "tx_name", "gene_id")) > tx # a GRanges object with 1 transcript per row GRanges with 37924 ranges and 1 elementMetadata value seqnames ranges strand | gene_id <rle> <iranges> <rle> | <compressedcharacterlist> [1] chr1 [ 69091, 70008] + | 79501 [2] chr1 [323892, 328581] + | 100133331 [3] chr1 [323892, 328581] + | 100132287 [4] chr1 [323892, 328581] + | 100132062 [5] chr1 [367659, 368597] + | 81399 [6] chr1 [367659, 368597] + | 729759 [7] chr1 [367659, 368597] + | 26683 [8] chr1 [763064, 789740] + | 643837 [9] chr1 [861121, 879961] + | 148398 ... ... ... ... ... ... [37916] chrY [27177050, 27198251] - | 9083 [37917] chrY [27177050, 27198251] - | 442867 [37918] chrY [27177050, 27198251] - | 442868 [37919] chrY [27209230, 27246039] - | 114761 [37920] chrY [27209230, 27246039] - | 474150 [37921] chrY [27209230, 27246039] - | 474149 [37922] chrY [27329790, 27330920] - | 252949 [37923] chrY [27329790, 27330920] - | 474152 [37924] chrY [27329790, 27330920] - | 474151 seqlengths chr1 chr2 ... chr18_gl000207_random 249250621 243199373 ... 4262 Now you can use findOverlaps() on 'mysnps' and 'tx' to find the transcripts hits by your snps. But before you can do this, you need to rename the sequences in 'mysnps' because dbSNPs and UCSC use different naming conventions for the chromosomes: > seqnames(mysnps) <- sub("ch", "chr", seqnames(mysnps)) Then: > map <- as.matrix(findOverlaps(mysnps, tx)) 'map' contains the mapping between your SNPs and their genes but not in a readable form (this matrix contains indices) so we make the 'snp2gene' data frame with 2 cols: 1 for your SNP ids and 1 for the associated gene ids: > mapped_genes <- values(tx)$gene_id[map[, 2]] > mapped_snps <- rep.int(values(mysnps)$myids[map[, 1]], elementLengths(mapped_genes)) > snp2gene <- unique(data.frame(snp_id=mapped_snps, gene_id=unlist(mapped_genes))) > rownames(snp2gene) <- NULL > snp2gene[1:4, ] snp_id gene_id 1 rs7547453 6497 2 rs2840542 79906 3 rs1999527 63976 4 rs4648545 7161 Note that there is no guarantee that the number of rows in this data frame is the number of your original SNP ids because the relation between SNP ids and gene ids is of course not one-to-one. Also the method described above considers that a SNP hits a gene if it's located between the start and the end of one of its transcripts but it doesn't take in account the exon structure of the transcripts. If you want to do this you need to use exonsBy() (from GenomicFeatures) to extract the exons grouped by transcripts (this will be stored in a GRangesList object) and use this object instead of 'tx' in the call to findOverlaps(). Hope this helps, H. > > > > Simon No??l > CdeC > _______________________________________________ > Bioconductor mailing list > Bioconductor at r-project.org > https://stat.ethz.ch/mailman/listinfo/bioconductor > Search the archives: http://news.gmane.org/gmane.science.biology.informatics.conductor -- Hervé Pagès Program in Computational Biology Division of Public Health Sciences Fred Hutchinson Cancer Research Center 1100 Fairview Ave. N, M2-B876 P.O. Box 19024 Seattle, WA 98109-1024 E-mail: hpages at fhcrc.org Phone: (206) 667-5791 Fax: (206) 667-1319
ADD REPLY
0
Entering edit mode
Hi Simon, The error you see when running, mapped_snps <- rep.int(values(mysnps)$myids[map[, 1]], elementLengths(mapped_genes)) is because the column name for the elementMetadata value has changed in the mysnps object. Notice in Herve's mysnps object the column name was myids but in yours it is RefSNP_id. Replace myids with RefNSP_id and it will work, mapped_snps <- rep.int(values(mysnps)$RefSNP_id[map[, 1]], elementLengths(mapped_genes)) I don't know why the code taking 3-5 days to run on your system. For me it is taking the estimated 3-5 minutes. From within your R session, | source("http://bioconductor.org/biocLite.R") update.packages(repos=biocinstallRepos(), ask=FALSE, checkBuilt=TRUE) | Once you've done this, please provide the output of sessionInfo(). Here is mine, > sessionInfo() R version 2.13.0 Under development (unstable) (2010-12-16 r53865) Platform: x86_64-unknown-linux-gnu (64-bit) locale: [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8 [5] LC_MONETARY=C LC_MESSAGES=en_US.UTF-8 [7] LC_PAPER=en_US.UTF-8 LC_NAME=C [9] LC_ADDRESS=C LC_TELEPHONE=C [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C attached base packages: [1] stats graphics grDevices utils datasets methods base other attached packages: [1] SNPlocs.Hsapiens.dbSNP.20101109_0.99.2 [2] GenomicFeatures_1.3.11 [3] GenomicRanges_1.3.7 [4] IRanges_1.9.17 loaded via a namespace (and not attached): [1] Biobase_2.11.7 biomaRt_2.7.1 Biostrings_2.19.2 BSgenome_1.19.2 [5] DBI_0.2-5 RCurl_1.5-0 RSQLite_0.9-4 rtracklayer_1.11.8 [9] tools_2.13.0 XML_3.2-0 Valerie On 12/22/2010 06:51 AM, Simon Noël wrote: > Hello, > > Sorry to be slow for a response. What you say that should take 3-5 min took 3-5 days... I don't have the best computer in the world. > > We do have a supercomputer but even if it's the same version of R and package than my litle computer, it's not working... Well... It's not working on my computer to but not at the same place. We both have R 2.12.0 and the lastest version of every package. > > Here is what I have. I have try with the test you sugested. > > On the supercomputer : > > >> getSNPcount() >> > ch1 ch2 ch3 ch4 ch5 ch6 ch7 ch8 ch9 ch10 > 1849438 1936836 1613418 1613633 1453710 1446827 1335745 1243129 995075 1158707 > ch11 ch12 ch13 ch14 ch15 ch16 ch17 ch18 ch19 ch20 > 1147722 1105364 815729 740129 657719 757926 641905 645646 520666 586708 > ch21 ch22 chX chY chMT > 338254 331060 529608 67438 624 > >> ch22snps <- getSNPlocs("ch22") >> ch22snps[1:5, ] >> > RefSNP_id alleles_as_ambig loc > 1 56342815 K 16050353 > 2 7288968 S 16050994 > 3 6518357 M 16051107 > 4 7292503 R 16051209 > 5 6518368 Y 16051241 > >> makeGRangesFromRefSNPids <- function(myids) >> > + { > + ans_seqnames <- character(length(myids)) > + ans_seqnames[] <- "unknown" > + ans_locs <- integer(length(myids)) > + for (seqname in names(getSNPcount())) { > + locs <- getSNPlocs(seqname) > + ids <- paste("rs", locs$RefSNP_id, sep="") > + myrows <- match(myids, ids) > + ans_seqnames[!is.na(myrows)] <- seqname > + ans_locs[!is.na(myrows)] <- locs$loc[myrows] > + } > + GRanges(seqnames=ans_seqnames, > + IRanges(start=ans_locs, width=1), > + RefSNP_id=myids) > + } > >> myids <- c("rs7547453", "rs2840542", "rs1999527", "rs4648545", "rs10915459", "rs16838750", "rs12128230", "rs999999999") >> mysnps <- makeGRangesFromRefSNPids(myids) >> > Warning message: > In ans_locs[!is.na(myrows)] <- locs$loc[myrows] : > number of items to replace is not a multiple of replacement length > >> mysnps # a GRanges object with 1 SNP per row >> > GRangeswith 8 ranges and 1 elementMetadata value > seqnames ranges strand | RefSNP_id > <rle> <iranges> <rle> | <character> > [1] ch1 [2195117, 2195117] * | rs7547453 > [2] ch1 [2291680, 2291680] * | rs2840542 > [3] ch1 [3256108, 3256108] * | rs1999527 > [4] ch1 [3577321, 3577321] * | rs4648545 > [5] ch1 [4230463, 4230463] * | rs10915459 > [6] ch1 [4404344, 4404344] * | rs16838750 > [7] ch1 [4501911, 4501911] * | rs12128230 > [8] unknown [ 0, 0] * | rs999999999 > seqlengths > ch1 unknown > NA NA > >> txdb <- makeTranscriptDbFromUCSC(genome="hg19", tablename="refGene") >> > Downloadthe refGene table ... OK > Downloadthe refLink table ... OK > Extractthe 'transcripts' data frame ... OK > Extractthe 'splicings' data frame ... OK > Downloadand preprocess the 'chrominfo' data frame ... OK > Preparethe 'metadata' data frame ... OK > Makethe TranscriptDb object ... Error in .writeMetadataTable(conn, metadata) : subscript out of bounds > In addition: There were 50 or more warnings (use warnings() to see the first 50) > > > > > > On my computer : > > > >> getSNPcount() >> > ch1 ch2 ch3 ch4 ch5 ch6 ch7 ch8 ch9 ch10 > 1849438 1936836 1613418 1613633 1453710 1446827 1335745 1243129 995075 1158707 > ch11 ch12 ch13 ch14 ch15 ch16 ch17 ch18 ch19 ch20 > 1147722 1105364 815729 740129 657719 757926 641905 645646 520666 586708 > ch21 ch22 chX chY chMT > 338254 331060 529608 67438 624 > >> ch22snps <- getSNPlocs("ch22") >> ch22snps[1:5, ] >> > RefSNP_id alleles_as_ambig loc > 1 56342815 K 16050353 > 2 7288968 S 16050994 > 3 6518357 M 16051107 > 4 7292503 R 16051209 > 5 6518368 Y 16051241 > >> makeGRangesFromRefSNPids <- function(myids) >> > + { > + ans_seqnames <- character(length(myids)) > + ans_seqnames[] <- "unknown" > + ans_locs <- integer(length(myids)) > + for (seqname in names(getSNPcount())) { > + locs <- getSNPlocs(seqname) > + ids <- paste("rs", locs$RefSNP_id, sep="") > + myrows <- match(myids, ids) > + ans_seqnames[!is.na(myrows)] <- seqname > + ans_locs[!is.na(myrows)] <- locs$loc[myrows] > + } > + GRanges(seqnames=ans_seqnames, > + IRanges(start=ans_locs, width=1), > + RefSNP_id=myids) > + } > >> myids <- c("rs7547453", "rs2840542", "rs1999527", "rs4648545", "rs10915459", "rs16838750", "rs12128230", "rs999999999") >> mysnps <- makeGRangesFromRefSNPids(myids) >> > Warning message: > In ans_locs[!is.na(myrows)] <- locs$loc[myrows] : > number of items to replace is not a multiple of replacement length > >> mysnps # a GRanges object with 1 SNP per row >> > GRangeswith 8 ranges and 1 elementMetadata value > seqnames ranges strand | RefSNP_id > <rle> <iranges> <rle> | <character> > [1] ch1 [2195117, 2195117] * | rs7547453 > [2] ch1 [2291680, 2291680] * | rs2840542 > [3] ch1 [3256108, 3256108] * | rs1999527 > [4] ch1 [3577321, 3577321] * | rs4648545 > [5] ch1 [4230463, 4230463] * | rs10915459 > [6] ch1 [4404344, 4404344] * | rs16838750 > [7] ch1 [4501911, 4501911] * | rs12128230 > [8] unknown [ 0, 0] * | rs999999999 > seqlengths > ch1 unknown > NA NA > >> txdb <- makeTranscriptDbFromUCSC(genome="hg19", tablename="refGene") >> > Downloadthe refGene table ... OK > Downloadthe refLink table ... OK > Extractthe 'transcripts' data frame ... OK > Extractthe 'splicings' data frame ... OK > Downloadand preprocess the 'chrominfo' data frame ... OK > Preparethe 'metadata' data frame ... OK > Makethe TranscriptDb object ... OK > Il y a eu 50 avis ou plus (utilisez warnings() pour voir les 50 premiers) > >> txdb >> > TranscriptDbobject: > | Db type: TranscriptDb > | Data source: UCSC > | Genome: hg19 > | UCSC Table: refGene > | Type of Gene ID: Entrez Gene ID > | Full dataset: yes > | transcript_nrow: 38098 > | exon_nrow: 230201 > | cds_nrow: 204683 > | Db created by: GenomicFeatures package from Bioconductor > | Creation time: 2010-12-22 09:34:40 -0500 (Wed, 22 Dec 2010) > | GenomicFeatures version at creation time: 1.2.3 > | RSQLite version at creation time: 0.9-4 > | DBSCHEMAVERSION: 1.0 > >> tx <- transcripts(txdb, columns=c("tx_id", "tx_name", "gene_id")) >> tx # a GRanges object with 1 transcript per row >> > GRangeswith 38098 ranges and 3 elementMetadata values > seqnames ranges strand | tx_id tx_name > <rle> <iranges> <rle> | <integer> <character> > [1] chr1 [ 69091, 70008] + | 1021 NM_001005484 > [2] chr1 [323892, 328581] + | 1023 NR_028327 > [3] chr1 [323892, 328581] + | 1024 NR_028322 > [4] chr1 [323892, 328581] + | 1025 NR_028325 > [5] chr1 [367659, 368597] + | 1022 NM_001005277 > [6] chr1 [367659, 368597] + | 1026 NM_001005221 > [7] chr1 [367659, 368597] + | 1027 NM_001005224 > [8] chr1 [763064, 789740] + | 174 NR_015368 > [9] chr1 [861121, 879961] + | 1035 NM_152486 > ... ... ... ... ... ... ... > [38090] chrY [27177050, 27198251] - | 18991 NM_004678 > [38091] chrY [27177050, 27198251] - | 18992 NM_001002760 > [38092] chrY [27177050, 27198251] - | 18993 NM_001002761 > [38093] chrY [27209230, 27246039] - | 18994 NR_001525 > [38094] chrY [27209230, 27246039] - | 18995 NR_002177 > [38095] chrY [27209230, 27246039] - | 18996 NR_002178 > [38096] chrY [27329790, 27330920] - | 18997 NR_001526 > [38097] chrY [27329790, 27330920] - | 18998 NR_002179 > [38098] chrY [27329790, 27330920] - | 18999 NR_002180 > gene_id > <compressedcharacterlist> > [1] 79501 > [2] 100133331 > [3] 100132287 > [4] 100132062 > [5] 81399 > [6] 729759 > [7] 26683 > [8] 643837 > [9] 148398 > ... ... > [38090] 9083 > [38091] 442867 > [38092] 442868 > [38093] 114761 > [38094] 474150 > [38095] 474149 > [38096] 252949 > [38097] 474152 > [38098] 474151 > seqlengths > chr1 chr2 ... chr18_gl000207_random > 249250621 243199373 ... 4262 > >> seqnames(mysnps) <- sub("ch", "chr", seqnames(mysnps)) >> map <- as.matrix(findOverlaps(mysnps, tx)) >> > Warning message : > In .local(query, subject, maxgap, minoverlap, type, select, ...) : > Only some seqnames from 'query' and 'subject' were not identical > >> mapped_genes <- values(tx)$gene_id[map[, 2]] >> mapped_snps <- rep.int(values(mysnps)$myids[map[, 1]], elementLengths(mapped_genes)) >> > Erreur dans base::rep.int(x, ...) : valeur 'times' incorrecte > > > > Simon Noël > CdeC > ________________________________________ > De : Hervé Pagès [hpages@fhcrc.org] > Date d'envoi : 5 décembre 2010 23:43 > À : Simon Noël > Cc : bioconductor@r-project.org > Objet : Re: [BioC] maping SNPs > > Hi Simon, > > On 12/03/2010 10:17 AM, Simon Noël wrote: > >> Hi, >> >> >> >> I have a really big list of SNPs names like : >> >> >> >> SNPNAME >> >> rs7547453 >> >> rs2840542 >> >> rs1999527 >> >> rs4648545 >> >> rs10915459 >> >> rs16838750 >> >> rs12128230 >> >> ... >> >> >> >> I woudlike to map them to their official gene symbol. What the best way to >> procede? >> > Those ids look like RefSNP ids. AFAIK dbSNP doesn't provide mappings > from SNPs to genes and I don't think we have this kind of mappings > either in our collection of annotations (*.db packages). > > But if your SNPs are Human then you can do the mapping yourself by > using a SNPlocs.Hsapies.dbSNP.* package and the GenomicFeatures > packages. > > The latest SNPlocs.Hsapies.dbSNP.* package is > SNPlocs.Hsapiens.dbSNP.20101109 (dbSNP Build 132): it contains > SNP locations relative to the GRCh37 genome: > > > library(SNPlocs.Hsapiens.dbSNP.20101109) > > getSNPcount() > ch1 ch2 ch3 ch4 ch5 ch6 ch7 ch8 ch9 > ch10 > 1849438 1936836 1613418 1613633 1453710 1446827 1335745 1243129 995075 > 1158707 > ch11 ch12 ch13 ch14 ch15 ch16 ch17 ch18 ch19 > ch20 > 1147722 1105364 815729 740129 657719 757926 641905 645646 520666 > 586708 > ch21 ch22 chX chY chMT > 338254 331060 529608 67438 624 > > Note that it doesn't contain *all* SNPs from dbSNP Build 132: > only a subset of "clean" SNPs (see ?SNPlocs.Hsapiens.dbSNP.20101109 > for the details). > > > ch22snps <- getSNPlocs("ch22") > > ch22snps[1:5, ] > RefSNP_id alleles_as_ambig loc > 1 56342815 K 16050353 > 2 7288968 S 16050994 > 3 6518357 M 16051107 > 4 7292503 R 16051209 > 5 6518368 Y 16051241 > > Note that the rs prefix has been dropped. > > So here is how to proceed: > > First you can use the following function to make a GRanges object from > your SNP ids: > > makeGRangesFromRefSNPids <- function(myids) > { > ans_seqnames <- character(length(myids)) > ans_seqnames[] <- "unknown" > ans_locs <- integer(length(myids)) > for (seqname in names(getSNPcount())) { > locs <- getSNPlocs(seqname) > ids <- paste("rs", locs$RefSNP_id, sep="") > myrows <- match(myids, ids) > ans_seqnames[!is.na(myrows)] <- seqname > ans_locs[!is.na(myrows)] <- locs$loc[myrows] > } > GRanges(seqnames=ans_seqnames, > IRanges(start=ans_locs, width=1), > RefSNP_id=myids) > } > > This takes between 3 and 5 minutes: > > > myids <- c("rs7547453", "rs2840542", "rs1999527", "rs4648545", > "rs10915459", "rs16838750", "rs12128230", "rs999999999") > > mysnps <- makeGRangesFromRefSNPids(myids) > > mysnps # a GRanges object with 1 SNP per row > GRanges with 8 ranges and 1 elementMetadata value > seqnames ranges strand | myids > <rle> <iranges> <rle> | <character> > [1] ch1 [2195117, 2195117] * | rs7547453 > [2] ch1 [2291680, 2291680] * | rs2840542 > [3] ch1 [3256108, 3256108] * | rs1999527 > [4] ch1 [3577321, 3577321] * | rs4648545 > [5] ch1 [4230463, 4230463] * | rs10915459 > [6] ch1 [4404344, 4404344] * | rs16838750 > [7] ch1 [4501911, 4501911] * | rs12128230 > [8] unknown [ 0, 0] * | rs999999999 > > seqlengths > ch1 unknown > NA NA > > The next step is to create a TranscriptDb object with > makeTranscriptDbFromUCSC() or makeTranscriptDbFromBiomart() > from the GenomicFeatures package. This TranscriptDb object will > contain the transcript locations and their associated > genes extracted from the annotation source you choose. > For example, if you want to use RefSeq genes: > > ## Takes about 3 minutes: > > txdb <- makeTranscriptDbFromUCSC(genome="hg19", tablename="refGene") > > txdb > TranscriptDb object: > | Db type: TranscriptDb > | Data source: UCSC > | Genome: hg19 > | UCSC Table: refGene > | Type of Gene ID: Entrez Gene ID > | Full dataset: yes > | transcript_nrow: 37924 > | exon_nrow: 230024 > | cds_nrow: 204571 > | Db created by: GenomicFeatures package from Bioconductor > | Creation time: 2010-12-05 19:41:40 -0800 (Sun, 05 Dec 2010) > | GenomicFeatures version at creation time: 1.2.2 > | RSQLite version at creation time: 0.9-4 > | DBSCHEMAVERSION: 1.0 > > Note the type of gene IDs (Entrez Gene ID) stored in this TranscriptDb > object: this means that later you will be able to use the org.Hs.eg.db > package to map your gene ids to their symbol (the org.*.eg.db packages > are Entrez Gene ID centric). > > To extract the transcript locations together with their genes: > > > tx <- transcripts(txdb, columns=c("tx_id", "tx_name", "gene_id")) > > tx # a GRanges object with 1 transcript per row > GRanges with 37924 ranges and 1 elementMetadata value > seqnames ranges strand | gene_id > <rle> <iranges> <rle> | <compressedcharacterlist> > [1] chr1 [ 69091, 70008] + | 79501 > [2] chr1 [323892, 328581] + | 100133331 > [3] chr1 [323892, 328581] + | 100132287 > [4] chr1 [323892, 328581] + | 100132062 > [5] chr1 [367659, 368597] + | 81399 > [6] chr1 [367659, 368597] + | 729759 > [7] chr1 [367659, 368597] + | 26683 > [8] chr1 [763064, 789740] + | 643837 > [9] chr1 [861121, 879961] + | 148398 > ... ... ... ... ... ... > [37916] chrY [27177050, 27198251] - | 9083 > [37917] chrY [27177050, 27198251] - | 442867 > [37918] chrY [27177050, 27198251] - | 442868 > [37919] chrY [27209230, 27246039] - | 114761 > [37920] chrY [27209230, 27246039] - | 474150 > [37921] chrY [27209230, 27246039] - | 474149 > [37922] chrY [27329790, 27330920] - | 252949 > [37923] chrY [27329790, 27330920] - | 474152 > [37924] chrY [27329790, 27330920] - | 474151 > > seqlengths > chr1 chr2 ... chr18_gl000207_random > 249250621 243199373 ... 4262 > > Now you can use findOverlaps() on 'mysnps' and 'tx' to find > the transcripts hits by your snps. But before you can do this, > you need to rename the sequences in 'mysnps' because dbSNPs and > UCSC use different naming conventions for the chromosomes: > > > seqnames(mysnps) <- sub("ch", "chr", seqnames(mysnps)) > > Then: > > > map <- as.matrix(findOverlaps(mysnps, tx)) > > 'map' contains the mapping between your SNPs and their genes but not > in a readable form (this matrix contains indices) so we make the > 'snp2gene' data frame with 2 cols: 1 for your SNP ids and 1 for > the associated gene ids: > > > mapped_genes <- values(tx)$gene_id[map[, 2]] > > mapped_snps <- rep.int(values(mysnps)$myids[map[, 1]], > elementLengths(mapped_genes)) > > snp2gene <- unique(data.frame(snp_id=mapped_snps, > gene_id=unlist(mapped_genes))) > > rownames(snp2gene) <- NULL > > snp2gene[1:4, ] > snp_id gene_id > 1 rs7547453 6497 > 2 rs2840542 79906 > 3 rs1999527 63976 > 4 rs4648545 7161 > > Note that there is no guarantee that the number of rows in this > data frame is the number of your original SNP ids because the > relation between SNP ids and gene ids is of course not one-to-one. > > Also the method described above considers that a SNP hits a gene > if it's located between the start and the end of one of its > transcripts but it doesn't take in account the exon structure of > the transcripts. If you want to do this you need to use exonsBy() > (from GenomicFeatures) to extract the exons grouped by transcripts > (this will be stored in a GRangesList object) and use this object > instead of 'tx' in the call to findOverlaps(). > > Hope this helps, > H. > > > >> Simon Noël >> CdeC >> _______________________________________________ >> Bioconductor mailing list >> Bioconductor@r-project.org >> https://stat.ethz.ch/mailman/listinfo/bioconductor >> Search the archives: http://news.gmane.org/gmane.science.biology.informatics.conductor >> > -- > Hervé Pagès > > Program in Computational Biology > Division of Public Health Sciences > Fred Hutchinson Cancer Research Center > 1100 Fairview Ave. N, M2-B876 > P.O. Box 19024 > Seattle, WA 98109-1024 > > E-mail: hpages@fhcrc.org > Phone: (206) 667-5791 > Fax: (206) 667-1319 > > _______________________________________________ > Bioconductor mailing list > Bioconductor@r-project.org > https://stat.ethz.ch/mailman/listinfo/bioconductor > Search the archives: http://news.gmane.org/gmane.science.biology.informatics.conductor > [[alternative HTML version deleted]]
ADD REPLY

Login before adding your answer.

Traffic: 630 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6