Help expanding limmaUsersGuide section 8.7 to 3x2 factorial
0
0
Entering edit mode
Jenny Drnevich ★ 2.0k
@jenny-drnevich-2812
Last seen 8 days ago
United States
(My previous reply got held up for moderator approval because somehow it was too big - too much extra text at the bottom. This is the shortened version) Hi Gordon, Thank you!! Now I can either use > solve(crossprod(design),t(design)) as the contrast matrix to turn the main effects & interaction into the group means, and then do a second contrast matrix to get the pairwise comparisons I want, or I could first do the cell means model, then use > t(solve(crossprod(design),t(design))) as the contrast matrix to get the main effects & interactions. I never quite understood matrix algebra, but at least now I can go back and forth either way that's convenient. I assume this also extends to n-way ANOVAs? > Pop <- gl(2,4,labels=c("BMA","BVO")) > Trt <- gl(2,2,8,labels=c("c","e")) > Time <- gl(2,1,8,labels=c("0","1")) > contrasts(Pop) <- contr.sum(2) > contrasts(Trt) <- contr.sum(2) > contrasts(Time) <- contr.sum(2) > design <- model.matrix(~Pop*Trt*Time) > rownames(design) <- paste(Pop,Trt,Time,sep=".") > solve(crossprod(design),t(design)) BMA.c.0 BMA.c.1 BMA.e.0 BMA.e.1 BVO.c.0 BVO.c.1 BVO.e.0 BVO.e.1 (Intercept) 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 Pop1 0.125 0.125 0.125 0.125 -0.125 -0.125 -0.125 -0.125 Trt1 0.125 0.125 -0.125 -0.125 0.125 0.125 -0.125 -0.125 Time1 0.125 -0.125 0.125 -0.125 0.125 -0.125 0.125 -0.125 Pop1:Trt1 0.125 0.125 -0.125 -0.125 -0.125 -0.125 0.125 0.125 Pop1:Time1 0.125 -0.125 0.125 -0.125 -0.125 0.125 -0.125 0.125 Trt1:Time1 0.125 -0.125 -0.125 0.125 0.125 -0.125 -0.125 0.125 Pop1:Trt1:Time1 0.125 -0.125 -0.125 0.125 -0.125 0.125 0.125 -0.125 Thanks again, Jenny At 02:35 AM 1/13/2011, Gordon K Smyth wrote: >Hi Jenny, > >Here is a way to get the equivalent coefficients to put into your >contrast matrix for a 4x2 >factorial: > > > Pop <- gl(4,2,labels=c("BMA","BVO","BWF","CAR")) > > Trt <- gl(2,1,8,labels=c("c","e")) > > contrasts(Pop) <- contr.sum(4) > > contrasts(Trt) <- contr.sum(2) > > design <- model.matrix(~Pop*Trt) > > rownames(design) <- paste(Pop,Trt,sep=".") > > solve(crossprod(design),t(design)) > BMA.c BMA.e BVO.c BVO.e BWF.c BWF.e CAR.c CAR.e >(Intercept) 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 >Pop1 0.375 0.375 >-0.125 -0.125 -0.125 -0.125 -0.125 -0.125 Pop2 -0.125 >-0.125 0.375 0.375 -0.125 -0.125 >-0.125 -0.125 Pop3 -0.125 -0.125 -0.125 -0.125 0.375 0.375 >-0.125 -0.125 Trt1 >0.125 -0.125 0.125 -0.125 0.125 -0.125 0.125 -0.125 >Pop1:Trt1 0.375 -0.375 -0.125 0.125 >-0.125 0.125 -0.125 0.125 Pop2:Trt1 -0.125 0.125 0.375 -0.375 >-0.125 0.125 -0.125 0.125 >Pop3:Trt1 -0.125 0.125 -0.125 0.125 0.375 -0.375 -0.125 0.125 > >Best wishes >Gordon > >PS. Sending again, because the email didn't seem to get to BioC the >first time.
GO GO • 725 views
ADD COMMENT

Login before adding your answer.

Traffic: 397 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6