Overrepresentation pathway with KEGGPROFILE and SPIA
0
0
Entering edit mode
@gregory-voisin-945
Last seen 9.9 years ago
Canada
Hi , Based on a selection of gene ID , to find the overrepresentation of pathway, we could use: 1. find_enriched_pathway function (KEGG profile) or 2. spia ( SPIA package) where PNDE gives an overrepresentation. These functions works very well. However (Based on a same  selection of gene ID!),  I get some differents results. If I compare the top ten list, I have only one pathwayID. I expected a similar result with a little potential differents! A. If I look inside the function to compute the PVALUE  the function seems the same : KEGG profile : pvalue[x] <- phyper(kegg_result_length[x], keggpathway2gene_length[x],             length(unique(unlist(keggpathway2gene))) - kegg_result_length[x],             length(unique(unlist(kegg_result))), lower.tail = F) And SPIA: ph[i] <- phyper(q = noMy - 1, m = pSize[i], n = length(all) -                 pSize[i], k = length(de), lower.tail = FALSE) HENCE, the compute of pvalues seems the same. B. The compute of pvalues seems the same ! Not really : the reference of compute the overepresentation . KEGG profile: the reference is based on keggpathway2gene And SPIA: the reference is based on "all" . All is all id  present on the chips. In my case ( Illumina HT6 v2 , this chips is considered as pangenomic. HENCE, the reference muste be the same in this case. My question.  In your opinion, Why this MAJOR difference between these both methods? Actually, I offer the both results  but I need to justify the difference. If the authors of these methods ( or others) could be given me some explications or explain to me where I'm wrong , I will appreciate that ! Greg Montréal > sessionInfo() R version 2.15.0 (2012-03-30) Platform: x86_64-pc-mingw32/x64 (64-bit) locale: [1] LC_COLLATE=French_Canada.1252  LC_CTYPE=French_Canada.1252 [3] LC_MONETARY=French_Canada.1252 LC_NUMERIC=C [5] LC_TIME=French_Canada.1252 attached base packages: [1] grid      tcltk     stats     graphics  grDevices utils datasets  methods [9] base other attached packages:  [1] xtable_1.7-0              GO.db_2.8.0               NbClust_1.2  [4] gplots_2.11.0             MASS_7.3-17 KernSmooth_2.23-7  [7] caTools_1.13              bitops_1.0-4.1            gdata_2.12.0 [10] gtools_2.7.0              pls_2.3-0                 Mfuzz_2.16.0 [13] DynDoc_1.36.0             widgetTools_1.36.0        e1071_1.6-1 [16] class_7.3-3               KEGGprofile_1.0.0         KEGG.db_2.8.0 [19] TeachingDemos_2.8         png_0.1-4                 SPIA_2.8.0 [22] KEGGgraph_1.14.0          XML_3.95-0.1 annotate_1.36.0 [25] GOstats_2.24.0            graph_1.36.0 Category_2.24.0 [28] lumiHumanAll.db_1.18.0    org.Hs.eg.db_2.8.0 lumiHumanIDMapping_1.10.0 [31] RSQLite_0.11.2            DBI_0.2-5 AnnotationDbi_1.20.0 [34] limma_3.14.0              lumi_2.10.0               nleqslv_1.9.4 [37] Biobase_2.18.0            BiocGenerics_0.4.0 loaded via a namespace (and not attached):  [1] affy_1.36.0           affyio_1.26.0         AnnotationForge_1.0.0  [4] BiocInstaller_1.8.3   colorspace_1.1-1      genefilter_1.40.0  [7] GSEABase_1.20.0       IRanges_1.6.17        lattice_0.20-10 [10] Matrix_1.0-6          methylumi_2.4.0       mgcv_1.7-13 [13] nlme_3.1-103          preprocessCore_1.20.0 RBGL_1.34.0 [16] splines_2.15.0        stats4_2.15.0         survival_2.36-12 [19] tkWidgets_1.36.0      tools_2.15.0          zlibbioc_1.4.0 [[alternative HTML version deleted]]
SPIA SPIA • 1.1k views
ADD COMMENT

Login before adding your answer.

Traffic: 516 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6