help with limma design, contrast matrices
1
0
Entering edit mode
Lisa Cohen ▴ 50
@lisa-cohen-6190
Last seen 9.3 years ago
United States
I have a set of microarray data (one-channel custom Agilent) that I'm trying to analyze for gene expression differences following an experiment: Sponges were acutely exposed to combinations of oil and dispersant treatments. There were 4 treatment groups: OD, OC, UD, UC, 6 sponge colonies each fragmented 12 times, with three replicates = 72 samples total. I found some examples from the limma user's guide and other materials, but I'm still having trouble. http://www.bioconductor.org/help/course- materials/2009/BioC2009/labs/limma/limma.pdf https://stat.ethz.ch/pipermail/bioconductor/2012-January/043154.html http://www.bioconductor.org/packages/2.12/bioc/vignettes/limma/inst/do c/usersguide.pdf In coding my contrast and design matrices, I'm confused and wondering if someone can help? Details and code below. Thank you in advance! Lisa This is the design matrix I set up: > v<-c(0,1) > mat<-cbind(c(rep(v[2],18),rep(v[1],54)), + c(rep(v[1],18),rep(v[2],18),rep(v[1],36)), + c(rep(v[1],36),rep(v[2],18),rep(v[1],18)), + c(rep(v[1],54),rep(v[2],18)), + c(rep(1:6,12))) > colnames(mat)<-c("UC","UD","OC","OD","Colony") > mat UC UD OC OD Colony [1,] 1 0 0 0 1 [2,] 1 0 0 0 2 [3,] 1 0 0 0 3 [4,] 1 0 0 0 4 [5,] 1 0 0 0 5 [6,] 1 0 0 0 6 [7,] 1 0 0 0 1 [8,] 1 0 0 0 2 [9,] 1 0 0 0 3 [10,] 1 0 0 0 4 [11,] 1 0 0 0 5 [12,] 1 0 0 0 6 [13,] 1 0 0 0 1 [14,] 1 0 0 0 2 [15,] 1 0 0 0 3 [16,] 1 0 0 0 4 [17,] 1 0 0 0 5 [18,] 1 0 0 0 6 [19,] 0 1 0 0 1 [20,] 0 1 0 0 2 [21,] 0 1 0 0 3 [22,] 0 1 0 0 4 [23,] 0 1 0 0 5 [24,] 0 1 0 0 6 [25,] 0 1 0 0 1 [26,] 0 1 0 0 2 [27,] 0 1 0 0 3 [28,] 0 1 0 0 4 [29,] 0 1 0 0 5 [30,] 0 1 0 0 6 [31,] 0 1 0 0 1 [32,] 0 1 0 0 2 [33,] 0 1 0 0 3 [34,] 0 1 0 0 4 [35,] 0 1 0 0 5 [36,] 0 1 0 0 6 [37,] 0 0 1 0 1 [38,] 0 0 1 0 2 [39,] 0 0 1 0 3 [40,] 0 0 1 0 4 [41,] 0 0 1 0 5 [42,] 0 0 1 0 6 [43,] 0 0 1 0 1 [44,] 0 0 1 0 2 [45,] 0 0 1 0 3 [46,] 0 0 1 0 4 [47,] 0 0 1 0 5 [48,] 0 0 1 0 6 [49,] 0 0 1 0 1 [50,] 0 0 1 0 2 [51,] 0 0 1 0 3 [52,] 0 0 1 0 4 [53,] 0 0 1 0 5 [54,] 0 0 1 0 6 [55,] 0 0 0 1 1 [56,] 0 0 0 1 2 [57,] 0 0 0 1 3 [58,] 0 0 0 1 4 [59,] 0 0 0 1 5 [60,] 0 0 0 1 6 [61,] 0 0 0 1 1 [62,] 0 0 0 1 2 [63,] 0 0 0 1 3 [64,] 0 0 0 1 4 [65,] 0 0 0 1 5 [66,] 0 0 0 1 6 [67,] 0 0 0 1 1 [68,] 0 0 0 1 2 [69,] 0 0 0 1 3 [70,] 0 0 0 1 4 [71,] 0 0 0 1 5 [72,] 0 0 0 1 6 What is the role of the contrast matrix? When I set up model.matrix(), there are too many comparisons: > design<-model.matrix(~factor(mat)) > design (Intercept) factor(mat)1 factor(mat)2 factor(mat)3 factor(mat)4 factor(mat)5 factor(mat)6 1 1 1 0 0 0 0 0 2 1 1 0 0 0 0 0 3 1 1 0 0 0 0 0 4 1 1 0 0 0 0 0 5 1 1 0 0 0 0 0 6 1 1 0 0 0 0 0 7 1 1 0 0 0 0 0 8 1 1 0 0 0 0 0 9 1 1 0 0 0 0 0 10 1 1 0 0 0 0 0 11 1 1 0 0 0 0 0 12 1 1 0 0 0 0 0 13 1 1 0 0 0 0 0 14 1 1 0 0 0 0 0 15 1 1 0 0 0 0 0 16 1 1 0 0 0 0 0 17 1 1 0 0 0 0 0 18 1 1 0 0 0 0 0 19 1 0 0 0 0 0 0 20 1 0 0 0 0 0 0 21 1 0 0 0 0 0 0 22 1 0 0 0 0 0 0 23 1 0 0 0 0 0 0 24 1 0 0 0 0 0 0 25 1 0 0 0 0 0 0 26 1 0 0 0 0 0 0 27 1 0 0 0 0 0 0 28 1 0 0 0 0 0 0 29 1 0 0 0 0 0 0 30 1 0 0 0 0 0 0 31 1 0 0 0 0 0 0 32 1 0 0 0 0 0 0 33 1 0 0 0 0 0 0 34 1 0 0 0 0 0 0 35 1 0 0 0 0 0 0 36 1 0 0 0 0 0 0 37 1 0 0 0 0 0 0 38 1 0 0 0 0 0 0 39 1 0 0 0 0 0 0 40 1 0 0 0 0 0 0 41 1 0 0 0 0 0 0 42 1 0 0 0 0 0 0 43 1 0 0 0 0 0 0 44 1 0 0 0 0 0 0 45 1 0 0 0 0 0 0 46 1 0 0 0 0 0 0 47 1 0 0 0 0 0 0 48 1 0 0 0 0 0 0 49 1 0 0 0 0 0 0 50 1 0 0 0 0 0 0 51 1 0 0 0 0 0 0 52 1 0 0 0 0 0 0 53 1 0 0 0 0 0 0 54 1 0 0 0 0 0 0 55 1 0 0 0 0 0 0 56 1 0 0 0 0 0 0 57 1 0 0 0 0 0 0 58 1 0 0 0 0 0 0 59 1 0 0 0 0 0 0 60 1 0 0 0 0 0 0 61 1 0 0 0 0 0 0 62 1 0 0 0 0 0 0 63 1 0 0 0 0 0 0 64 1 0 0 0 0 0 0 65 1 0 0 0 0 0 0 66 1 0 0 0 0 0 0 67 1 0 0 0 0 0 0 68 1 0 0 0 0 0 0 69 1 0 0 0 0 0 0 70 1 0 0 0 0 0 0 71 1 0 0 0 0 0 0 72 1 0 0 0 0 0 0 73 1 0 0 0 0 0 0 74 1 0 0 0 0 0 0 75 1 0 0 0 0 0 0 76 1 0 0 0 0 0 0 77 1 0 0 0 0 0 0 78 1 0 0 0 0 0 0 79 1 0 0 0 0 0 0 80 1 0 0 0 0 0 0 81 1 0 0 0 0 0 0 82 1 0 0 0 0 0 0 83 1 0 0 0 0 0 0 84 1 0 0 0 0 0 0 85 1 0 0 0 0 0 0 86 1 0 0 0 0 0 0 87 1 0 0 0 0 0 0 88 1 0 0 0 0 0 0 89 1 0 0 0 0 0 0 90 1 0 0 0 0 0 0 91 1 1 0 0 0 0 0 92 1 1 0 0 0 0 0 93 1 1 0 0 0 0 0 94 1 1 0 0 0 0 0 95 1 1 0 0 0 0 0 96 1 1 0 0 0 0 0 97 1 1 0 0 0 0 0 98 1 1 0 0 0 0 0 99 1 1 0 0 0 0 0 100 1 1 0 0 0 0 0 101 1 1 0 0 0 0 0 102 1 1 0 0 0 0 0 103 1 1 0 0 0 0 0 104 1 1 0 0 0 0 0 105 1 1 0 0 0 0 0 106 1 1 0 0 0 0 0 107 1 1 0 0 0 0 0 108 1 1 0 0 0 0 0 109 1 0 0 0 0 0 0 110 1 0 0 0 0 0 0 111 1 0 0 0 0 0 0 112 1 0 0 0 0 0 0 113 1 0 0 0 0 0 0 114 1 0 0 0 0 0 0 115 1 0 0 0 0 0 0 116 1 0 0 0 0 0 0 117 1 0 0 0 0 0 0 118 1 0 0 0 0 0 0 119 1 0 0 0 0 0 0 120 1 0 0 0 0 0 0 121 1 0 0 0 0 0 0 122 1 0 0 0 0 0 0 123 1 0 0 0 0 0 0 124 1 0 0 0 0 0 0 125 1 0 0 0 0 0 0 126 1 0 0 0 0 0 0 127 1 0 0 0 0 0 0 128 1 0 0 0 0 0 0 129 1 0 0 0 0 0 0 130 1 0 0 0 0 0 0 131 1 0 0 0 0 0 0 132 1 0 0 0 0 0 0 133 1 0 0 0 0 0 0 134 1 0 0 0 0 0 0 135 1 0 0 0 0 0 0 136 1 0 0 0 0 0 0 137 1 0 0 0 0 0 0 138 1 0 0 0 0 0 0 139 1 0 0 0 0 0 0 140 1 0 0 0 0 0 0 141 1 0 0 0 0 0 0 142 1 0 0 0 0 0 0 143 1 0 0 0 0 0 0 144 1 0 0 0 0 0 0 145 1 0 0 0 0 0 0 146 1 0 0 0 0 0 0 147 1 0 0 0 0 0 0 148 1 0 0 0 0 0 0 149 1 0 0 0 0 0 0 150 1 0 0 0 0 0 0 151 1 0 0 0 0 0 0 152 1 0 0 0 0 0 0 153 1 0 0 0 0 0 0 154 1 0 0 0 0 0 0 155 1 0 0 0 0 0 0 156 1 0 0 0 0 0 0 157 1 0 0 0 0 0 0 158 1 0 0 0 0 0 0 159 1 0 0 0 0 0 0 160 1 0 0 0 0 0 0 161 1 0 0 0 0 0 0 162 1 0 0 0 0 0 0 163 1 0 0 0 0 0 0 164 1 0 0 0 0 0 0 165 1 0 0 0 0 0 0 166 1 0 0 0 0 0 0 167 1 0 0 0 0 0 0 168 1 0 0 0 0 0 0 169 1 0 0 0 0 0 0 170 1 0 0 0 0 0 0 171 1 0 0 0 0 0 0 172 1 0 0 0 0 0 0 173 1 0 0 0 0 0 0 174 1 0 0 0 0 0 0 175 1 0 0 0 0 0 0 176 1 0 0 0 0 0 0 177 1 0 0 0 0 0 0 178 1 0 0 0 0 0 0 179 1 0 0 0 0 0 0 180 1 0 0 0 0 0 0 181 1 1 0 0 0 0 0 182 1 1 0 0 0 0 0 183 1 1 0 0 0 0 0 184 1 1 0 0 0 0 0 185 1 1 0 0 0 0 0 186 1 1 0 0 0 0 0 187 1 1 0 0 0 0 0 188 1 1 0 0 0 0 0 189 1 1 0 0 0 0 0 190 1 1 0 0 0 0 0 191 1 1 0 0 0 0 0 192 1 1 0 0 0 0 0 193 1 1 0 0 0 0 0 194 1 1 0 0 0 0 0 195 1 1 0 0 0 0 0 196 1 1 0 0 0 0 0 197 1 1 0 0 0 0 0 198 1 1 0 0 0 0 0 199 1 0 0 0 0 0 0 200 1 0 0 0 0 0 0 201 1 0 0 0 0 0 0 202 1 0 0 0 0 0 0 203 1 0 0 0 0 0 0 204 1 0 0 0 0 0 0 205 1 0 0 0 0 0 0 206 1 0 0 0 0 0 0 207 1 0 0 0 0 0 0 208 1 0 0 0 0 0 0 209 1 0 0 0 0 0 0 210 1 0 0 0 0 0 0 211 1 0 0 0 0 0 0 212 1 0 0 0 0 0 0 213 1 0 0 0 0 0 0 214 1 0 0 0 0 0 0 215 1 0 0 0 0 0 0 216 1 0 0 0 0 0 0 217 1 0 0 0 0 0 0 218 1 0 0 0 0 0 0 219 1 0 0 0 0 0 0 220 1 0 0 0 0 0 0 221 1 0 0 0 0 0 0 222 1 0 0 0 0 0 0 223 1 0 0 0 0 0 0 224 1 0 0 0 0 0 0 225 1 0 0 0 0 0 0 226 1 0 0 0 0 0 0 227 1 0 0 0 0 0 0 228 1 0 0 0 0 0 0 229 1 0 0 0 0 0 0 230 1 0 0 0 0 0 0 231 1 0 0 0 0 0 0 232 1 0 0 0 0 0 0 233 1 0 0 0 0 0 0 234 1 0 0 0 0 0 0 235 1 0 0 0 0 0 0 236 1 0 0 0 0 0 0 237 1 0 0 0 0 0 0 238 1 0 0 0 0 0 0 239 1 0 0 0 0 0 0 240 1 0 0 0 0 0 0 241 1 0 0 0 0 0 0 242 1 0 0 0 0 0 0 243 1 0 0 0 0 0 0 244 1 0 0 0 0 0 0 245 1 0 0 0 0 0 0 246 1 0 0 0 0 0 0 247 1 0 0 0 0 0 0 248 1 0 0 0 0 0 0 249 1 0 0 0 0 0 0 250 1 0 0 0 0 0 0 251 1 0 0 0 0 0 0 252 1 0 0 0 0 0 0 253 1 0 0 0 0 0 0 254 1 0 0 0 0 0 0 255 1 0 0 0 0 0 0 256 1 0 0 0 0 0 0 257 1 0 0 0 0 0 0 258 1 0 0 0 0 0 0 259 1 0 0 0 0 0 0 260 1 0 0 0 0 0 0 261 1 0 0 0 0 0 0 262 1 0 0 0 0 0 0 263 1 0 0 0 0 0 0 264 1 0 0 0 0 0 0 265 1 0 0 0 0 0 0 266 1 0 0 0 0 0 0 267 1 0 0 0 0 0 0 268 1 0 0 0 0 0 0 269 1 0 0 0 0 0 0 270 1 0 0 0 0 0 0 271 1 1 0 0 0 0 0 272 1 1 0 0 0 0 0 273 1 1 0 0 0 0 0 274 1 1 0 0 0 0 0 275 1 1 0 0 0 0 0 276 1 1 0 0 0 0 0 277 1 1 0 0 0 0 0 278 1 1 0 0 0 0 0 279 1 1 0 0 0 0 0 280 1 1 0 0 0 0 0 281 1 1 0 0 0 0 0 282 1 1 0 0 0 0 0 283 1 1 0 0 0 0 0 284 1 1 0 0 0 0 0 285 1 1 0 0 0 0 0 286 1 1 0 0 0 0 0 287 1 1 0 0 0 0 0 288 1 1 0 0 0 0 0 289 1 1 0 0 0 0 0 290 1 0 1 0 0 0 0 291 1 0 0 1 0 0 0 292 1 0 0 0 1 0 0 293 1 0 0 0 0 1 0 294 1 0 0 0 0 0 1 295 1 1 0 0 0 0 0 296 1 0 1 0 0 0 0 297 1 0 0 1 0 0 0 298 1 0 0 0 1 0 0 299 1 0 0 0 0 1 0 300 1 0 0 0 0 0 1 301 1 1 0 0 0 0 0 302 1 0 1 0 0 0 0 303 1 0 0 1 0 0 0 304 1 0 0 0 1 0 0 305 1 0 0 0 0 1 0 306 1 0 0 0 0 0 1 307 1 1 0 0 0 0 0 308 1 0 1 0 0 0 0 309 1 0 0 1 0 0 0 310 1 0 0 0 1 0 0 311 1 0 0 0 0 1 0 312 1 0 0 0 0 0 1 313 1 1 0 0 0 0 0 314 1 0 1 0 0 0 0 315 1 0 0 1 0 0 0 316 1 0 0 0 1 0 0 317 1 0 0 0 0 1 0 318 1 0 0 0 0 0 1 319 1 1 0 0 0 0 0 320 1 0 1 0 0 0 0 321 1 0 0 1 0 0 0 322 1 0 0 0 1 0 0 323 1 0 0 0 0 1 0 324 1 0 0 0 0 0 1 325 1 1 0 0 0 0 0 326 1 0 1 0 0 0 0 327 1 0 0 1 0 0 0 328 1 0 0 0 1 0 0 329 1 0 0 0 0 1 0 330 1 0 0 0 0 0 1 331 1 1 0 0 0 0 0 332 1 0 1 0 0 0 0 333 1 0 0 1 0 0 0 334 1 0 0 0 1 0 0 335 1 0 0 0 0 1 0 336 1 0 0 0 0 0 1 337 1 1 0 0 0 0 0 338 1 0 1 0 0 0 0 339 1 0 0 1 0 0 0 340 1 0 0 0 1 0 0 341 1 0 0 0 0 1 0 342 1 0 0 0 0 0 1 343 1 1 0 0 0 0 0 344 1 0 1 0 0 0 0 345 1 0 0 1 0 0 0 346 1 0 0 0 1 0 0 347 1 0 0 0 0 1 0 348 1 0 0 0 0 0 1 349 1 1 0 0 0 0 0 350 1 0 1 0 0 0 0 351 1 0 0 1 0 0 0 352 1 0 0 0 1 0 0 353 1 0 0 0 0 1 0 354 1 0 0 0 0 0 1 355 1 1 0 0 0 0 0 356 1 0 1 0 0 0 0 357 1 0 0 1 0 0 0 358 1 0 0 0 1 0 0 359 1 0 0 0 0 1 0 360 1 0 0 0 0 0 1 attr(,"assign") [1] 0 1 1 1 1 1 1 attr(,"contrasts") attr(,"contrasts")$`factor(mat)` [1] "contr.treatment" This does not work" > fit<-lmFit(sponge_ExpressionSet,design) Error in lm.fit(design, t(M)) : incompatible dimensions > exprs(sponge_data_matrix)->spongeExprs Error in (function (classes, fdef, mtable) : unable to find an inherited method for function ‘exprs’ for signature ‘"matrix"’ My ExpressionSet is built from scratch: > sponge_ExpressionSet<-new("ExpressionSet",exprs=sponge_data_matrix,phe noData=pd,experimentData=experimentData,featureData=an) > sponge_ExpressionSet ExpressionSet (storageMode: lockedEnvironment) assayData: 15744 features, 72 samples element names: exprs protocolData: none phenoData sampleNames: 1_1 1_2 ... 9_8 (72 total) varLabels: Chip.Number File.Name ... percentlessthan0 (12 total) varMetadata: labelDescription featureData featureNames: 1 2 ... 15744 (15744 total) fvarLabels: Column Row ... X.1 (23 total) fvarMetadata: labelDescription experimentData: use 'experimentData(object)' Annotation: [[alternative HTML version deleted]]
Microarray limma Microarray limma • 1.3k views
ADD COMMENT
0
Entering edit mode
@ryan-c-thompson-5618
Last seen 10 weeks ago
Icahn School of Medicine at Mount Sinai…
Your design should be a data frame with two columns: a "treatment" column that is a factor with 4 levels, and a "colony" column that is a factor with 6 levels. Let's call this data frame "df". You can then make your design matrix like this: design <- model.matrix(~ treatment + colony, df) assuming that you are treating "colony" as a blocking factor. You can try other formulas as well, but putting your experimental design as a data frame with two factor columns gives you the best representation of the design. -Ryan On Thu 31 Oct 2013 02:23:42 PM PDT, Lisa Cohen wrote: > I have a set of microarray data (one-channel custom Agilent) that I'm > trying to analyze for gene expression differences following an experiment: > > Sponges were acutely exposed to combinations of oil and dispersant > treatments. There were 4 treatment groups: OD, OC, UD, UC, 6 sponge > colonies each fragmented 12 times, with three replicates = 72 samples total. > > I found some examples from the limma user's guide and other materials, but > I'm still having trouble. > http://www.bioconductor.org/help/course- materials/2009/BioC2009/labs/limma/limma.pdf > https://stat.ethz.ch/pipermail/bioconductor/2012-January/043154.html > http://www.bioconductor.org/packages/2.12/bioc/vignettes/limma/inst/ doc/usersguide.pdf > > In coding my contrast and design matrices, I'm confused and wondering if > someone can help? > > Details and code below. > > Thank you in advance! > > Lisa > > > > > This is the design matrix I set up: > >> v<-c(0,1) >> mat<-cbind(c(rep(v[2],18),rep(v[1],54)), > + c(rep(v[1],18),rep(v[2],18),rep(v[1],36)), > + c(rep(v[1],36),rep(v[2],18),rep(v[1],18)), > + c(rep(v[1],54),rep(v[2],18)), > + c(rep(1:6,12))) >> colnames(mat)<-c("UC","UD","OC","OD","Colony") > >> mat > UC UD OC OD Colony > [1,] 1 0 0 0 1 > [2,] 1 0 0 0 2 > [3,] 1 0 0 0 3 > [4,] 1 0 0 0 4 > [5,] 1 0 0 0 5 > [6,] 1 0 0 0 6 > [7,] 1 0 0 0 1 > [8,] 1 0 0 0 2 > [9,] 1 0 0 0 3 > [10,] 1 0 0 0 4 > [11,] 1 0 0 0 5 > [12,] 1 0 0 0 6 > [13,] 1 0 0 0 1 > [14,] 1 0 0 0 2 > [15,] 1 0 0 0 3 > [16,] 1 0 0 0 4 > [17,] 1 0 0 0 5 > [18,] 1 0 0 0 6 > [19,] 0 1 0 0 1 > [20,] 0 1 0 0 2 > [21,] 0 1 0 0 3 > [22,] 0 1 0 0 4 > [23,] 0 1 0 0 5 > [24,] 0 1 0 0 6 > [25,] 0 1 0 0 1 > [26,] 0 1 0 0 2 > [27,] 0 1 0 0 3 > [28,] 0 1 0 0 4 > [29,] 0 1 0 0 5 > [30,] 0 1 0 0 6 > [31,] 0 1 0 0 1 > [32,] 0 1 0 0 2 > [33,] 0 1 0 0 3 > [34,] 0 1 0 0 4 > [35,] 0 1 0 0 5 > [36,] 0 1 0 0 6 > [37,] 0 0 1 0 1 > [38,] 0 0 1 0 2 > [39,] 0 0 1 0 3 > [40,] 0 0 1 0 4 > [41,] 0 0 1 0 5 > [42,] 0 0 1 0 6 > [43,] 0 0 1 0 1 > [44,] 0 0 1 0 2 > [45,] 0 0 1 0 3 > [46,] 0 0 1 0 4 > [47,] 0 0 1 0 5 > [48,] 0 0 1 0 6 > [49,] 0 0 1 0 1 > [50,] 0 0 1 0 2 > [51,] 0 0 1 0 3 > [52,] 0 0 1 0 4 > [53,] 0 0 1 0 5 > [54,] 0 0 1 0 6 > [55,] 0 0 0 1 1 > [56,] 0 0 0 1 2 > [57,] 0 0 0 1 3 > [58,] 0 0 0 1 4 > [59,] 0 0 0 1 5 > [60,] 0 0 0 1 6 > [61,] 0 0 0 1 1 > [62,] 0 0 0 1 2 > [63,] 0 0 0 1 3 > [64,] 0 0 0 1 4 > [65,] 0 0 0 1 5 > [66,] 0 0 0 1 6 > [67,] 0 0 0 1 1 > [68,] 0 0 0 1 2 > [69,] 0 0 0 1 3 > [70,] 0 0 0 1 4 > [71,] 0 0 0 1 5 > [72,] 0 0 0 1 6 > > What is the role of the contrast matrix? > > When I set up model.matrix(), there are too many comparisons: > >> design<-model.matrix(~factor(mat)) >> design > (Intercept) factor(mat)1 factor(mat)2 factor(mat)3 factor(mat)4 > factor(mat)5 factor(mat)6 > 1 1 1 0 0 > 0 0 0 > 2 1 1 0 0 > 0 0 0 > 3 1 1 0 0 > 0 0 0 > 4 1 1 0 0 > 0 0 0 > 5 1 1 0 0 > 0 0 0 > 6 1 1 0 0 > 0 0 0 > 7 1 1 0 0 > 0 0 0 > 8 1 1 0 0 > 0 0 0 > 9 1 1 0 0 > 0 0 0 > 10 1 1 0 0 > 0 0 0 > 11 1 1 0 0 > 0 0 0 > 12 1 1 0 0 > 0 0 0 > 13 1 1 0 0 > 0 0 0 > 14 1 1 0 0 > 0 0 0 > 15 1 1 0 0 > 0 0 0 > 16 1 1 0 0 > 0 0 0 > 17 1 1 0 0 > 0 0 0 > 18 1 1 0 0 > 0 0 0 > 19 1 0 0 0 > 0 0 0 > 20 1 0 0 0 > 0 0 0 > 21 1 0 0 0 > 0 0 0 > 22 1 0 0 0 > 0 0 0 > 23 1 0 0 0 > 0 0 0 > 24 1 0 0 0 > 0 0 0 > 25 1 0 0 0 > 0 0 0 > 26 1 0 0 0 > 0 0 0 > 27 1 0 0 0 > 0 0 0 > 28 1 0 0 0 > 0 0 0 > 29 1 0 0 0 > 0 0 0 > 30 1 0 0 0 > 0 0 0 > 31 1 0 0 0 > 0 0 0 > 32 1 0 0 0 > 0 0 0 > 33 1 0 0 0 > 0 0 0 > 34 1 0 0 0 > 0 0 0 > 35 1 0 0 0 > 0 0 0 > 36 1 0 0 0 > 0 0 0 > 37 1 0 0 0 > 0 0 0 > 38 1 0 0 0 > 0 0 0 > 39 1 0 0 0 > 0 0 0 > 40 1 0 0 0 > 0 0 0 > 41 1 0 0 0 > 0 0 0 > 42 1 0 0 0 > 0 0 0 > 43 1 0 0 0 > 0 0 0 > 44 1 0 0 0 > 0 0 0 > 45 1 0 0 0 > 0 0 0 > 46 1 0 0 0 > 0 0 0 > 47 1 0 0 0 > 0 0 0 > 48 1 0 0 0 > 0 0 0 > 49 1 0 0 0 > 0 0 0 > 50 1 0 0 0 > 0 0 0 > 51 1 0 0 0 > 0 0 0 > 52 1 0 0 0 > 0 0 0 > 53 1 0 0 0 > 0 0 0 > 54 1 0 0 0 > 0 0 0 > 55 1 0 0 0 > 0 0 0 > 56 1 0 0 0 > 0 0 0 > 57 1 0 0 0 > 0 0 0 > 58 1 0 0 0 > 0 0 0 > 59 1 0 0 0 > 0 0 0 > 60 1 0 0 0 > 0 0 0 > 61 1 0 0 0 > 0 0 0 > 62 1 0 0 0 > 0 0 0 > 63 1 0 0 0 > 0 0 0 > 64 1 0 0 0 > 0 0 0 > 65 1 0 0 0 > 0 0 0 > 66 1 0 0 0 > 0 0 0 > 67 1 0 0 0 > 0 0 0 > 68 1 0 0 0 > 0 0 0 > 69 1 0 0 0 > 0 0 0 > 70 1 0 0 0 > 0 0 0 > 71 1 0 0 0 > 0 0 0 > 72 1 0 0 0 > 0 0 0 > 73 1 0 0 0 > 0 0 0 > 74 1 0 0 0 > 0 0 0 > 75 1 0 0 0 > 0 0 0 > 76 1 0 0 0 > 0 0 0 > 77 1 0 0 0 > 0 0 0 > 78 1 0 0 0 > 0 0 0 > 79 1 0 0 0 > 0 0 0 > 80 1 0 0 0 > 0 0 0 > 81 1 0 0 0 > 0 0 0 > 82 1 0 0 0 > 0 0 0 > 83 1 0 0 0 > 0 0 0 > 84 1 0 0 0 > 0 0 0 > 85 1 0 0 0 > 0 0 0 > 86 1 0 0 0 > 0 0 0 > 87 1 0 0 0 > 0 0 0 > 88 1 0 0 0 > 0 0 0 > 89 1 0 0 0 > 0 0 0 > 90 1 0 0 0 > 0 0 0 > 91 1 1 0 0 > 0 0 0 > 92 1 1 0 0 > 0 0 0 > 93 1 1 0 0 > 0 0 0 > 94 1 1 0 0 > 0 0 0 > 95 1 1 0 0 > 0 0 0 > 96 1 1 0 0 > 0 0 0 > 97 1 1 0 0 > 0 0 0 > 98 1 1 0 0 > 0 0 0 > 99 1 1 0 0 > 0 0 0 > 100 1 1 0 0 > 0 0 0 > 101 1 1 0 0 > 0 0 0 > 102 1 1 0 0 > 0 0 0 > 103 1 1 0 0 > 0 0 0 > 104 1 1 0 0 > 0 0 0 > 105 1 1 0 0 > 0 0 0 > 106 1 1 0 0 > 0 0 0 > 107 1 1 0 0 > 0 0 0 > 108 1 1 0 0 > 0 0 0 > 109 1 0 0 0 > 0 0 0 > 110 1 0 0 0 > 0 0 0 > 111 1 0 0 0 > 0 0 0 > 112 1 0 0 0 > 0 0 0 > 113 1 0 0 0 > 0 0 0 > 114 1 0 0 0 > 0 0 0 > 115 1 0 0 0 > 0 0 0 > 116 1 0 0 0 > 0 0 0 > 117 1 0 0 0 > 0 0 0 > 118 1 0 0 0 > 0 0 0 > 119 1 0 0 0 > 0 0 0 > 120 1 0 0 0 > 0 0 0 > 121 1 0 0 0 > 0 0 0 > 122 1 0 0 0 > 0 0 0 > 123 1 0 0 0 > 0 0 0 > 124 1 0 0 0 > 0 0 0 > 125 1 0 0 0 > 0 0 0 > 126 1 0 0 0 > 0 0 0 > 127 1 0 0 0 > 0 0 0 > 128 1 0 0 0 > 0 0 0 > 129 1 0 0 0 > 0 0 0 > 130 1 0 0 0 > 0 0 0 > 131 1 0 0 0 > 0 0 0 > 132 1 0 0 0 > 0 0 0 > 133 1 0 0 0 > 0 0 0 > 134 1 0 0 0 > 0 0 0 > 135 1 0 0 0 > 0 0 0 > 136 1 0 0 0 > 0 0 0 > 137 1 0 0 0 > 0 0 0 > 138 1 0 0 0 > 0 0 0 > 139 1 0 0 0 > 0 0 0 > 140 1 0 0 0 > 0 0 0 > 141 1 0 0 0 > 0 0 0 > 142 1 0 0 0 > 0 0 0 > 143 1 0 0 0 > 0 0 0 > 144 1 0 0 0 > 0 0 0 > 145 1 0 0 0 > 0 0 0 > 146 1 0 0 0 > 0 0 0 > 147 1 0 0 0 > 0 0 0 > 148 1 0 0 0 > 0 0 0 > 149 1 0 0 0 > 0 0 0 > 150 1 0 0 0 > 0 0 0 > 151 1 0 0 0 > 0 0 0 > 152 1 0 0 0 > 0 0 0 > 153 1 0 0 0 > 0 0 0 > 154 1 0 0 0 > 0 0 0 > 155 1 0 0 0 > 0 0 0 > 156 1 0 0 0 > 0 0 0 > 157 1 0 0 0 > 0 0 0 > 158 1 0 0 0 > 0 0 0 > 159 1 0 0 0 > 0 0 0 > 160 1 0 0 0 > 0 0 0 > 161 1 0 0 0 > 0 0 0 > 162 1 0 0 0 > 0 0 0 > 163 1 0 0 0 > 0 0 0 > 164 1 0 0 0 > 0 0 0 > 165 1 0 0 0 > 0 0 0 > 166 1 0 0 0 > 0 0 0 > 167 1 0 0 0 > 0 0 0 > 168 1 0 0 0 > 0 0 0 > 169 1 0 0 0 > 0 0 0 > 170 1 0 0 0 > 0 0 0 > 171 1 0 0 0 > 0 0 0 > 172 1 0 0 0 > 0 0 0 > 173 1 0 0 0 > 0 0 0 > 174 1 0 0 0 > 0 0 0 > 175 1 0 0 0 > 0 0 0 > 176 1 0 0 0 > 0 0 0 > 177 1 0 0 0 > 0 0 0 > 178 1 0 0 0 > 0 0 0 > 179 1 0 0 0 > 0 0 0 > 180 1 0 0 0 > 0 0 0 > 181 1 1 0 0 > 0 0 0 > 182 1 1 0 0 > 0 0 0 > 183 1 1 0 0 > 0 0 0 > 184 1 1 0 0 > 0 0 0 > 185 1 1 0 0 > 0 0 0 > 186 1 1 0 0 > 0 0 0 > 187 1 1 0 0 > 0 0 0 > 188 1 1 0 0 > 0 0 0 > 189 1 1 0 0 > 0 0 0 > 190 1 1 0 0 > 0 0 0 > 191 1 1 0 0 > 0 0 0 > 192 1 1 0 0 > 0 0 0 > 193 1 1 0 0 > 0 0 0 > 194 1 1 0 0 > 0 0 0 > 195 1 1 0 0 > 0 0 0 > 196 1 1 0 0 > 0 0 0 > 197 1 1 0 0 > 0 0 0 > 198 1 1 0 0 > 0 0 0 > 199 1 0 0 0 > 0 0 0 > 200 1 0 0 0 > 0 0 0 > 201 1 0 0 0 > 0 0 0 > 202 1 0 0 0 > 0 0 0 > 203 1 0 0 0 > 0 0 0 > 204 1 0 0 0 > 0 0 0 > 205 1 0 0 0 > 0 0 0 > 206 1 0 0 0 > 0 0 0 > 207 1 0 0 0 > 0 0 0 > 208 1 0 0 0 > 0 0 0 > 209 1 0 0 0 > 0 0 0 > 210 1 0 0 0 > 0 0 0 > 211 1 0 0 0 > 0 0 0 > 212 1 0 0 0 > 0 0 0 > 213 1 0 0 0 > 0 0 0 > 214 1 0 0 0 > 0 0 0 > 215 1 0 0 0 > 0 0 0 > 216 1 0 0 0 > 0 0 0 > 217 1 0 0 0 > 0 0 0 > 218 1 0 0 0 > 0 0 0 > 219 1 0 0 0 > 0 0 0 > 220 1 0 0 0 > 0 0 0 > 221 1 0 0 0 > 0 0 0 > 222 1 0 0 0 > 0 0 0 > 223 1 0 0 0 > 0 0 0 > 224 1 0 0 0 > 0 0 0 > 225 1 0 0 0 > 0 0 0 > 226 1 0 0 0 > 0 0 0 > 227 1 0 0 0 > 0 0 0 > 228 1 0 0 0 > 0 0 0 > 229 1 0 0 0 > 0 0 0 > 230 1 0 0 0 > 0 0 0 > 231 1 0 0 0 > 0 0 0 > 232 1 0 0 0 > 0 0 0 > 233 1 0 0 0 > 0 0 0 > 234 1 0 0 0 > 0 0 0 > 235 1 0 0 0 > 0 0 0 > 236 1 0 0 0 > 0 0 0 > 237 1 0 0 0 > 0 0 0 > 238 1 0 0 0 > 0 0 0 > 239 1 0 0 0 > 0 0 0 > 240 1 0 0 0 > 0 0 0 > 241 1 0 0 0 > 0 0 0 > 242 1 0 0 0 > 0 0 0 > 243 1 0 0 0 > 0 0 0 > 244 1 0 0 0 > 0 0 0 > 245 1 0 0 0 > 0 0 0 > 246 1 0 0 0 > 0 0 0 > 247 1 0 0 0 > 0 0 0 > 248 1 0 0 0 > 0 0 0 > 249 1 0 0 0 > 0 0 0 > 250 1 0 0 0 > 0 0 0 > 251 1 0 0 0 > 0 0 0 > 252 1 0 0 0 > 0 0 0 > 253 1 0 0 0 > 0 0 0 > 254 1 0 0 0 > 0 0 0 > 255 1 0 0 0 > 0 0 0 > 256 1 0 0 0 > 0 0 0 > 257 1 0 0 0 > 0 0 0 > 258 1 0 0 0 > 0 0 0 > 259 1 0 0 0 > 0 0 0 > 260 1 0 0 0 > 0 0 0 > 261 1 0 0 0 > 0 0 0 > 262 1 0 0 0 > 0 0 0 > 263 1 0 0 0 > 0 0 0 > 264 1 0 0 0 > 0 0 0 > 265 1 0 0 0 > 0 0 0 > 266 1 0 0 0 > 0 0 0 > 267 1 0 0 0 > 0 0 0 > 268 1 0 0 0 > 0 0 0 > 269 1 0 0 0 > 0 0 0 > 270 1 0 0 0 > 0 0 0 > 271 1 1 0 0 > 0 0 0 > 272 1 1 0 0 > 0 0 0 > 273 1 1 0 0 > 0 0 0 > 274 1 1 0 0 > 0 0 0 > 275 1 1 0 0 > 0 0 0 > 276 1 1 0 0 > 0 0 0 > 277 1 1 0 0 > 0 0 0 > 278 1 1 0 0 > 0 0 0 > 279 1 1 0 0 > 0 0 0 > 280 1 1 0 0 > 0 0 0 > 281 1 1 0 0 > 0 0 0 > 282 1 1 0 0 > 0 0 0 > 283 1 1 0 0 > 0 0 0 > 284 1 1 0 0 > 0 0 0 > 285 1 1 0 0 > 0 0 0 > 286 1 1 0 0 > 0 0 0 > 287 1 1 0 0 > 0 0 0 > 288 1 1 0 0 > 0 0 0 > 289 1 1 0 0 > 0 0 0 > 290 1 0 1 0 > 0 0 0 > 291 1 0 0 1 > 0 0 0 > 292 1 0 0 0 > 1 0 0 > 293 1 0 0 0 > 0 1 0 > 294 1 0 0 0 > 0 0 1 > 295 1 1 0 0 > 0 0 0 > 296 1 0 1 0 > 0 0 0 > 297 1 0 0 1 > 0 0 0 > 298 1 0 0 0 > 1 0 0 > 299 1 0 0 0 > 0 1 0 > 300 1 0 0 0 > 0 0 1 > 301 1 1 0 0 > 0 0 0 > 302 1 0 1 0 > 0 0 0 > 303 1 0 0 1 > 0 0 0 > 304 1 0 0 0 > 1 0 0 > 305 1 0 0 0 > 0 1 0 > 306 1 0 0 0 > 0 0 1 > 307 1 1 0 0 > 0 0 0 > 308 1 0 1 0 > 0 0 0 > 309 1 0 0 1 > 0 0 0 > 310 1 0 0 0 > 1 0 0 > 311 1 0 0 0 > 0 1 0 > 312 1 0 0 0 > 0 0 1 > 313 1 1 0 0 > 0 0 0 > 314 1 0 1 0 > 0 0 0 > 315 1 0 0 1 > 0 0 0 > 316 1 0 0 0 > 1 0 0 > 317 1 0 0 0 > 0 1 0 > 318 1 0 0 0 > 0 0 1 > 319 1 1 0 0 > 0 0 0 > 320 1 0 1 0 > 0 0 0 > 321 1 0 0 1 > 0 0 0 > 322 1 0 0 0 > 1 0 0 > 323 1 0 0 0 > 0 1 0 > 324 1 0 0 0 > 0 0 1 > 325 1 1 0 0 > 0 0 0 > 326 1 0 1 0 > 0 0 0 > 327 1 0 0 1 > 0 0 0 > 328 1 0 0 0 > 1 0 0 > 329 1 0 0 0 > 0 1 0 > 330 1 0 0 0 > 0 0 1 > 331 1 1 0 0 > 0 0 0 > 332 1 0 1 0 > 0 0 0 > 333 1 0 0 1 > 0 0 0 > 334 1 0 0 0 > 1 0 0 > 335 1 0 0 0 > 0 1 0 > 336 1 0 0 0 > 0 0 1 > 337 1 1 0 0 > 0 0 0 > 338 1 0 1 0 > 0 0 0 > 339 1 0 0 1 > 0 0 0 > 340 1 0 0 0 > 1 0 0 > 341 1 0 0 0 > 0 1 0 > 342 1 0 0 0 > 0 0 1 > 343 1 1 0 0 > 0 0 0 > 344 1 0 1 0 > 0 0 0 > 345 1 0 0 1 > 0 0 0 > 346 1 0 0 0 > 1 0 0 > 347 1 0 0 0 > 0 1 0 > 348 1 0 0 0 > 0 0 1 > 349 1 1 0 0 > 0 0 0 > 350 1 0 1 0 > 0 0 0 > 351 1 0 0 1 > 0 0 0 > 352 1 0 0 0 > 1 0 0 > 353 1 0 0 0 > 0 1 0 > 354 1 0 0 0 > 0 0 1 > 355 1 1 0 0 > 0 0 0 > 356 1 0 1 0 > 0 0 0 > 357 1 0 0 1 > 0 0 0 > 358 1 0 0 0 > 1 0 0 > 359 1 0 0 0 > 0 1 0 > 360 1 0 0 0 > 0 0 1 > attr(,"assign") > [1] 0 1 1 1 1 1 1 > attr(,"contrasts") > attr(,"contrasts")$`factor(mat)` > [1] "contr.treatment" > > This does not work" > >> fit<-lmFit(sponge_ExpressionSet,design) > Error in lm.fit(design, t(M)) : incompatible dimensions >> exprs(sponge_data_matrix)->spongeExprs > Error in (function (classes, fdef, mtable) : > unable to find an inherited method for function ?exprs? for signature > ?"matrix"? > > > My ExpressionSet is built from scratch: > >> > sponge_ExpressionSet<-new("ExpressionSet",exprs=sponge_data_matrix,p henoData=pd,experimentData=experimentData,featureData=an) >> sponge_ExpressionSet > ExpressionSet (storageMode: lockedEnvironment) > assayData: 15744 features, 72 samples > element names: exprs > protocolData: none > phenoData > sampleNames: 1_1 1_2 ... 9_8 (72 total) > varLabels: Chip.Number File.Name ... percentlessthan0 (12 total) > varMetadata: labelDescription > featureData > featureNames: 1 2 ... 15744 (15744 total) > fvarLabels: Column Row ... X.1 (23 total) > fvarMetadata: labelDescription > experimentData: use 'experimentData(object)' > Annotation: > > [[alternative HTML version deleted]] > > > > _______________________________________________ > Bioconductor mailing list > Bioconductor at r-project.org > https://stat.ethz.ch/mailman/listinfo/bioconductor > Search the archives: http://news.gmane.org/gmane.science.biology.informatics.conductor
ADD COMMENT

Login before adding your answer.

Traffic: 610 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6