Search
Question: help with limma design, contrast matrices
0
gravatar for Lisa Cohen
4.0 years ago by
Lisa Cohen50
United States
Lisa Cohen50 wrote:
I have a set of microarray data (one-channel custom Agilent) that I'm trying to analyze for gene expression differences following an experiment: Sponges were acutely exposed to combinations of oil and dispersant treatments. There were 4 treatment groups: OD, OC, UD, UC, 6 sponge colonies each fragmented 12 times, with three replicates = 72 samples total. I found some examples from the limma user's guide and other materials, but I'm still having trouble. http://www.bioconductor.org/help/course- materials/2009/BioC2009/labs/limma/limma.pdf https://stat.ethz.ch/pipermail/bioconductor/2012-January/043154.html http://www.bioconductor.org/packages/2.12/bioc/vignettes/limma/inst/do c/usersguide.pdf In coding my contrast and design matrices, I'm confused and wondering if someone can help? Details and code below. Thank you in advance! Lisa This is the design matrix I set up: > v<-c(0,1) > mat<-cbind(c(rep(v[2],18),rep(v[1],54)), + c(rep(v[1],18),rep(v[2],18),rep(v[1],36)), + c(rep(v[1],36),rep(v[2],18),rep(v[1],18)), + c(rep(v[1],54),rep(v[2],18)), + c(rep(1:6,12))) > colnames(mat)<-c("UC","UD","OC","OD","Colony") > mat UC UD OC OD Colony [1,] 1 0 0 0 1 [2,] 1 0 0 0 2 [3,] 1 0 0 0 3 [4,] 1 0 0 0 4 [5,] 1 0 0 0 5 [6,] 1 0 0 0 6 [7,] 1 0 0 0 1 [8,] 1 0 0 0 2 [9,] 1 0 0 0 3 [10,] 1 0 0 0 4 [11,] 1 0 0 0 5 [12,] 1 0 0 0 6 [13,] 1 0 0 0 1 [14,] 1 0 0 0 2 [15,] 1 0 0 0 3 [16,] 1 0 0 0 4 [17,] 1 0 0 0 5 [18,] 1 0 0 0 6 [19,] 0 1 0 0 1 [20,] 0 1 0 0 2 [21,] 0 1 0 0 3 [22,] 0 1 0 0 4 [23,] 0 1 0 0 5 [24,] 0 1 0 0 6 [25,] 0 1 0 0 1 [26,] 0 1 0 0 2 [27,] 0 1 0 0 3 [28,] 0 1 0 0 4 [29,] 0 1 0 0 5 [30,] 0 1 0 0 6 [31,] 0 1 0 0 1 [32,] 0 1 0 0 2 [33,] 0 1 0 0 3 [34,] 0 1 0 0 4 [35,] 0 1 0 0 5 [36,] 0 1 0 0 6 [37,] 0 0 1 0 1 [38,] 0 0 1 0 2 [39,] 0 0 1 0 3 [40,] 0 0 1 0 4 [41,] 0 0 1 0 5 [42,] 0 0 1 0 6 [43,] 0 0 1 0 1 [44,] 0 0 1 0 2 [45,] 0 0 1 0 3 [46,] 0 0 1 0 4 [47,] 0 0 1 0 5 [48,] 0 0 1 0 6 [49,] 0 0 1 0 1 [50,] 0 0 1 0 2 [51,] 0 0 1 0 3 [52,] 0 0 1 0 4 [53,] 0 0 1 0 5 [54,] 0 0 1 0 6 [55,] 0 0 0 1 1 [56,] 0 0 0 1 2 [57,] 0 0 0 1 3 [58,] 0 0 0 1 4 [59,] 0 0 0 1 5 [60,] 0 0 0 1 6 [61,] 0 0 0 1 1 [62,] 0 0 0 1 2 [63,] 0 0 0 1 3 [64,] 0 0 0 1 4 [65,] 0 0 0 1 5 [66,] 0 0 0 1 6 [67,] 0 0 0 1 1 [68,] 0 0 0 1 2 [69,] 0 0 0 1 3 [70,] 0 0 0 1 4 [71,] 0 0 0 1 5 [72,] 0 0 0 1 6 What is the role of the contrast matrix? When I set up model.matrix(), there are too many comparisons: > design<-model.matrix(~factor(mat)) > design (Intercept) factor(mat)1 factor(mat)2 factor(mat)3 factor(mat)4 factor(mat)5 factor(mat)6 1 1 1 0 0 0 0 0 2 1 1 0 0 0 0 0 3 1 1 0 0 0 0 0 4 1 1 0 0 0 0 0 5 1 1 0 0 0 0 0 6 1 1 0 0 0 0 0 7 1 1 0 0 0 0 0 8 1 1 0 0 0 0 0 9 1 1 0 0 0 0 0 10 1 1 0 0 0 0 0 11 1 1 0 0 0 0 0 12 1 1 0 0 0 0 0 13 1 1 0 0 0 0 0 14 1 1 0 0 0 0 0 15 1 1 0 0 0 0 0 16 1 1 0 0 0 0 0 17 1 1 0 0 0 0 0 18 1 1 0 0 0 0 0 19 1 0 0 0 0 0 0 20 1 0 0 0 0 0 0 21 1 0 0 0 0 0 0 22 1 0 0 0 0 0 0 23 1 0 0 0 0 0 0 24 1 0 0 0 0 0 0 25 1 0 0 0 0 0 0 26 1 0 0 0 0 0 0 27 1 0 0 0 0 0 0 28 1 0 0 0 0 0 0 29 1 0 0 0 0 0 0 30 1 0 0 0 0 0 0 31 1 0 0 0 0 0 0 32 1 0 0 0 0 0 0 33 1 0 0 0 0 0 0 34 1 0 0 0 0 0 0 35 1 0 0 0 0 0 0 36 1 0 0 0 0 0 0 37 1 0 0 0 0 0 0 38 1 0 0 0 0 0 0 39 1 0 0 0 0 0 0 40 1 0 0 0 0 0 0 41 1 0 0 0 0 0 0 42 1 0 0 0 0 0 0 43 1 0 0 0 0 0 0 44 1 0 0 0 0 0 0 45 1 0 0 0 0 0 0 46 1 0 0 0 0 0 0 47 1 0 0 0 0 0 0 48 1 0 0 0 0 0 0 49 1 0 0 0 0 0 0 50 1 0 0 0 0 0 0 51 1 0 0 0 0 0 0 52 1 0 0 0 0 0 0 53 1 0 0 0 0 0 0 54 1 0 0 0 0 0 0 55 1 0 0 0 0 0 0 56 1 0 0 0 0 0 0 57 1 0 0 0 0 0 0 58 1 0 0 0 0 0 0 59 1 0 0 0 0 0 0 60 1 0 0 0 0 0 0 61 1 0 0 0 0 0 0 62 1 0 0 0 0 0 0 63 1 0 0 0 0 0 0 64 1 0 0 0 0 0 0 65 1 0 0 0 0 0 0 66 1 0 0 0 0 0 0 67 1 0 0 0 0 0 0 68 1 0 0 0 0 0 0 69 1 0 0 0 0 0 0 70 1 0 0 0 0 0 0 71 1 0 0 0 0 0 0 72 1 0 0 0 0 0 0 73 1 0 0 0 0 0 0 74 1 0 0 0 0 0 0 75 1 0 0 0 0 0 0 76 1 0 0 0 0 0 0 77 1 0 0 0 0 0 0 78 1 0 0 0 0 0 0 79 1 0 0 0 0 0 0 80 1 0 0 0 0 0 0 81 1 0 0 0 0 0 0 82 1 0 0 0 0 0 0 83 1 0 0 0 0 0 0 84 1 0 0 0 0 0 0 85 1 0 0 0 0 0 0 86 1 0 0 0 0 0 0 87 1 0 0 0 0 0 0 88 1 0 0 0 0 0 0 89 1 0 0 0 0 0 0 90 1 0 0 0 0 0 0 91 1 1 0 0 0 0 0 92 1 1 0 0 0 0 0 93 1 1 0 0 0 0 0 94 1 1 0 0 0 0 0 95 1 1 0 0 0 0 0 96 1 1 0 0 0 0 0 97 1 1 0 0 0 0 0 98 1 1 0 0 0 0 0 99 1 1 0 0 0 0 0 100 1 1 0 0 0 0 0 101 1 1 0 0 0 0 0 102 1 1 0 0 0 0 0 103 1 1 0 0 0 0 0 104 1 1 0 0 0 0 0 105 1 1 0 0 0 0 0 106 1 1 0 0 0 0 0 107 1 1 0 0 0 0 0 108 1 1 0 0 0 0 0 109 1 0 0 0 0 0 0 110 1 0 0 0 0 0 0 111 1 0 0 0 0 0 0 112 1 0 0 0 0 0 0 113 1 0 0 0 0 0 0 114 1 0 0 0 0 0 0 115 1 0 0 0 0 0 0 116 1 0 0 0 0 0 0 117 1 0 0 0 0 0 0 118 1 0 0 0 0 0 0 119 1 0 0 0 0 0 0 120 1 0 0 0 0 0 0 121 1 0 0 0 0 0 0 122 1 0 0 0 0 0 0 123 1 0 0 0 0 0 0 124 1 0 0 0 0 0 0 125 1 0 0 0 0 0 0 126 1 0 0 0 0 0 0 127 1 0 0 0 0 0 0 128 1 0 0 0 0 0 0 129 1 0 0 0 0 0 0 130 1 0 0 0 0 0 0 131 1 0 0 0 0 0 0 132 1 0 0 0 0 0 0 133 1 0 0 0 0 0 0 134 1 0 0 0 0 0 0 135 1 0 0 0 0 0 0 136 1 0 0 0 0 0 0 137 1 0 0 0 0 0 0 138 1 0 0 0 0 0 0 139 1 0 0 0 0 0 0 140 1 0 0 0 0 0 0 141 1 0 0 0 0 0 0 142 1 0 0 0 0 0 0 143 1 0 0 0 0 0 0 144 1 0 0 0 0 0 0 145 1 0 0 0 0 0 0 146 1 0 0 0 0 0 0 147 1 0 0 0 0 0 0 148 1 0 0 0 0 0 0 149 1 0 0 0 0 0 0 150 1 0 0 0 0 0 0 151 1 0 0 0 0 0 0 152 1 0 0 0 0 0 0 153 1 0 0 0 0 0 0 154 1 0 0 0 0 0 0 155 1 0 0 0 0 0 0 156 1 0 0 0 0 0 0 157 1 0 0 0 0 0 0 158 1 0 0 0 0 0 0 159 1 0 0 0 0 0 0 160 1 0 0 0 0 0 0 161 1 0 0 0 0 0 0 162 1 0 0 0 0 0 0 163 1 0 0 0 0 0 0 164 1 0 0 0 0 0 0 165 1 0 0 0 0 0 0 166 1 0 0 0 0 0 0 167 1 0 0 0 0 0 0 168 1 0 0 0 0 0 0 169 1 0 0 0 0 0 0 170 1 0 0 0 0 0 0 171 1 0 0 0 0 0 0 172 1 0 0 0 0 0 0 173 1 0 0 0 0 0 0 174 1 0 0 0 0 0 0 175 1 0 0 0 0 0 0 176 1 0 0 0 0 0 0 177 1 0 0 0 0 0 0 178 1 0 0 0 0 0 0 179 1 0 0 0 0 0 0 180 1 0 0 0 0 0 0 181 1 1 0 0 0 0 0 182 1 1 0 0 0 0 0 183 1 1 0 0 0 0 0 184 1 1 0 0 0 0 0 185 1 1 0 0 0 0 0 186 1 1 0 0 0 0 0 187 1 1 0 0 0 0 0 188 1 1 0 0 0 0 0 189 1 1 0 0 0 0 0 190 1 1 0 0 0 0 0 191 1 1 0 0 0 0 0 192 1 1 0 0 0 0 0 193 1 1 0 0 0 0 0 194 1 1 0 0 0 0 0 195 1 1 0 0 0 0 0 196 1 1 0 0 0 0 0 197 1 1 0 0 0 0 0 198 1 1 0 0 0 0 0 199 1 0 0 0 0 0 0 200 1 0 0 0 0 0 0 201 1 0 0 0 0 0 0 202 1 0 0 0 0 0 0 203 1 0 0 0 0 0 0 204 1 0 0 0 0 0 0 205 1 0 0 0 0 0 0 206 1 0 0 0 0 0 0 207 1 0 0 0 0 0 0 208 1 0 0 0 0 0 0 209 1 0 0 0 0 0 0 210 1 0 0 0 0 0 0 211 1 0 0 0 0 0 0 212 1 0 0 0 0 0 0 213 1 0 0 0 0 0 0 214 1 0 0 0 0 0 0 215 1 0 0 0 0 0 0 216 1 0 0 0 0 0 0 217 1 0 0 0 0 0 0 218 1 0 0 0 0 0 0 219 1 0 0 0 0 0 0 220 1 0 0 0 0 0 0 221 1 0 0 0 0 0 0 222 1 0 0 0 0 0 0 223 1 0 0 0 0 0 0 224 1 0 0 0 0 0 0 225 1 0 0 0 0 0 0 226 1 0 0 0 0 0 0 227 1 0 0 0 0 0 0 228 1 0 0 0 0 0 0 229 1 0 0 0 0 0 0 230 1 0 0 0 0 0 0 231 1 0 0 0 0 0 0 232 1 0 0 0 0 0 0 233 1 0 0 0 0 0 0 234 1 0 0 0 0 0 0 235 1 0 0 0 0 0 0 236 1 0 0 0 0 0 0 237 1 0 0 0 0 0 0 238 1 0 0 0 0 0 0 239 1 0 0 0 0 0 0 240 1 0 0 0 0 0 0 241 1 0 0 0 0 0 0 242 1 0 0 0 0 0 0 243 1 0 0 0 0 0 0 244 1 0 0 0 0 0 0 245 1 0 0 0 0 0 0 246 1 0 0 0 0 0 0 247 1 0 0 0 0 0 0 248 1 0 0 0 0 0 0 249 1 0 0 0 0 0 0 250 1 0 0 0 0 0 0 251 1 0 0 0 0 0 0 252 1 0 0 0 0 0 0 253 1 0 0 0 0 0 0 254 1 0 0 0 0 0 0 255 1 0 0 0 0 0 0 256 1 0 0 0 0 0 0 257 1 0 0 0 0 0 0 258 1 0 0 0 0 0 0 259 1 0 0 0 0 0 0 260 1 0 0 0 0 0 0 261 1 0 0 0 0 0 0 262 1 0 0 0 0 0 0 263 1 0 0 0 0 0 0 264 1 0 0 0 0 0 0 265 1 0 0 0 0 0 0 266 1 0 0 0 0 0 0 267 1 0 0 0 0 0 0 268 1 0 0 0 0 0 0 269 1 0 0 0 0 0 0 270 1 0 0 0 0 0 0 271 1 1 0 0 0 0 0 272 1 1 0 0 0 0 0 273 1 1 0 0 0 0 0 274 1 1 0 0 0 0 0 275 1 1 0 0 0 0 0 276 1 1 0 0 0 0 0 277 1 1 0 0 0 0 0 278 1 1 0 0 0 0 0 279 1 1 0 0 0 0 0 280 1 1 0 0 0 0 0 281 1 1 0 0 0 0 0 282 1 1 0 0 0 0 0 283 1 1 0 0 0 0 0 284 1 1 0 0 0 0 0 285 1 1 0 0 0 0 0 286 1 1 0 0 0 0 0 287 1 1 0 0 0 0 0 288 1 1 0 0 0 0 0 289 1 1 0 0 0 0 0 290 1 0 1 0 0 0 0 291 1 0 0 1 0 0 0 292 1 0 0 0 1 0 0 293 1 0 0 0 0 1 0 294 1 0 0 0 0 0 1 295 1 1 0 0 0 0 0 296 1 0 1 0 0 0 0 297 1 0 0 1 0 0 0 298 1 0 0 0 1 0 0 299 1 0 0 0 0 1 0 300 1 0 0 0 0 0 1 301 1 1 0 0 0 0 0 302 1 0 1 0 0 0 0 303 1 0 0 1 0 0 0 304 1 0 0 0 1 0 0 305 1 0 0 0 0 1 0 306 1 0 0 0 0 0 1 307 1 1 0 0 0 0 0 308 1 0 1 0 0 0 0 309 1 0 0 1 0 0 0 310 1 0 0 0 1 0 0 311 1 0 0 0 0 1 0 312 1 0 0 0 0 0 1 313 1 1 0 0 0 0 0 314 1 0 1 0 0 0 0 315 1 0 0 1 0 0 0 316 1 0 0 0 1 0 0 317 1 0 0 0 0 1 0 318 1 0 0 0 0 0 1 319 1 1 0 0 0 0 0 320 1 0 1 0 0 0 0 321 1 0 0 1 0 0 0 322 1 0 0 0 1 0 0 323 1 0 0 0 0 1 0 324 1 0 0 0 0 0 1 325 1 1 0 0 0 0 0 326 1 0 1 0 0 0 0 327 1 0 0 1 0 0 0 328 1 0 0 0 1 0 0 329 1 0 0 0 0 1 0 330 1 0 0 0 0 0 1 331 1 1 0 0 0 0 0 332 1 0 1 0 0 0 0 333 1 0 0 1 0 0 0 334 1 0 0 0 1 0 0 335 1 0 0 0 0 1 0 336 1 0 0 0 0 0 1 337 1 1 0 0 0 0 0 338 1 0 1 0 0 0 0 339 1 0 0 1 0 0 0 340 1 0 0 0 1 0 0 341 1 0 0 0 0 1 0 342 1 0 0 0 0 0 1 343 1 1 0 0 0 0 0 344 1 0 1 0 0 0 0 345 1 0 0 1 0 0 0 346 1 0 0 0 1 0 0 347 1 0 0 0 0 1 0 348 1 0 0 0 0 0 1 349 1 1 0 0 0 0 0 350 1 0 1 0 0 0 0 351 1 0 0 1 0 0 0 352 1 0 0 0 1 0 0 353 1 0 0 0 0 1 0 354 1 0 0 0 0 0 1 355 1 1 0 0 0 0 0 356 1 0 1 0 0 0 0 357 1 0 0 1 0 0 0 358 1 0 0 0 1 0 0 359 1 0 0 0 0 1 0 360 1 0 0 0 0 0 1 attr(,"assign") [1] 0 1 1 1 1 1 1 attr(,"contrasts") attr(,"contrasts")$`factor(mat)` [1] "contr.treatment" This does not work" > fit<-lmFit(sponge_ExpressionSet,design) Error in lm.fit(design, t(M)) : incompatible dimensions > exprs(sponge_data_matrix)->spongeExprs Error in (function (classes, fdef, mtable) : unable to find an inherited method for function ‘exprs’ for signature ‘"matrix"’ My ExpressionSet is built from scratch: > sponge_ExpressionSet<-new("ExpressionSet",exprs=sponge_data_matrix,phe noData=pd,experimentData=experimentData,featureData=an) > sponge_ExpressionSet ExpressionSet (storageMode: lockedEnvironment) assayData: 15744 features, 72 samples element names: exprs protocolData: none phenoData sampleNames: 1_1 1_2 ... 9_8 (72 total) varLabels: Chip.Number File.Name ... percentlessthan0 (12 total) varMetadata: labelDescription featureData featureNames: 1 2 ... 15744 (15744 total) fvarLabels: Column Row ... X.1 (23 total) fvarMetadata: labelDescription experimentData: use 'experimentData(object)' Annotation: [[alternative HTML version deleted]]
ADD COMMENTlink modified 4.1 years ago by Ryan C. Thompson6.1k • written 4.0 years ago by Lisa Cohen50
0
gravatar for Ryan C. Thompson
4.1 years ago by
The Scripps Research Institute, La Jolla, CA
Ryan C. Thompson6.1k wrote:
Your design should be a data frame with two columns: a "treatment" column that is a factor with 4 levels, and a "colony" column that is a factor with 6 levels. Let's call this data frame "df". You can then make your design matrix like this: design <- model.matrix(~ treatment + colony, df) assuming that you are treating "colony" as a blocking factor. You can try other formulas as well, but putting your experimental design as a data frame with two factor columns gives you the best representation of the design. -Ryan On Thu 31 Oct 2013 02:23:42 PM PDT, Lisa Cohen wrote: > I have a set of microarray data (one-channel custom Agilent) that I'm > trying to analyze for gene expression differences following an experiment: > > Sponges were acutely exposed to combinations of oil and dispersant > treatments. There were 4 treatment groups: OD, OC, UD, UC, 6 sponge > colonies each fragmented 12 times, with three replicates = 72 samples total. > > I found some examples from the limma user's guide and other materials, but > I'm still having trouble. > http://www.bioconductor.org/help/course- materials/2009/BioC2009/labs/limma/limma.pdf > https://stat.ethz.ch/pipermail/bioconductor/2012-January/043154.html > http://www.bioconductor.org/packages/2.12/bioc/vignettes/limma/inst/ doc/usersguide.pdf > > In coding my contrast and design matrices, I'm confused and wondering if > someone can help? > > Details and code below. > > Thank you in advance! > > Lisa > > > > > This is the design matrix I set up: > >> v<-c(0,1) >> mat<-cbind(c(rep(v[2],18),rep(v[1],54)), > + c(rep(v[1],18),rep(v[2],18),rep(v[1],36)), > + c(rep(v[1],36),rep(v[2],18),rep(v[1],18)), > + c(rep(v[1],54),rep(v[2],18)), > + c(rep(1:6,12))) >> colnames(mat)<-c("UC","UD","OC","OD","Colony") > >> mat > UC UD OC OD Colony > [1,] 1 0 0 0 1 > [2,] 1 0 0 0 2 > [3,] 1 0 0 0 3 > [4,] 1 0 0 0 4 > [5,] 1 0 0 0 5 > [6,] 1 0 0 0 6 > [7,] 1 0 0 0 1 > [8,] 1 0 0 0 2 > [9,] 1 0 0 0 3 > [10,] 1 0 0 0 4 > [11,] 1 0 0 0 5 > [12,] 1 0 0 0 6 > [13,] 1 0 0 0 1 > [14,] 1 0 0 0 2 > [15,] 1 0 0 0 3 > [16,] 1 0 0 0 4 > [17,] 1 0 0 0 5 > [18,] 1 0 0 0 6 > [19,] 0 1 0 0 1 > [20,] 0 1 0 0 2 > [21,] 0 1 0 0 3 > [22,] 0 1 0 0 4 > [23,] 0 1 0 0 5 > [24,] 0 1 0 0 6 > [25,] 0 1 0 0 1 > [26,] 0 1 0 0 2 > [27,] 0 1 0 0 3 > [28,] 0 1 0 0 4 > [29,] 0 1 0 0 5 > [30,] 0 1 0 0 6 > [31,] 0 1 0 0 1 > [32,] 0 1 0 0 2 > [33,] 0 1 0 0 3 > [34,] 0 1 0 0 4 > [35,] 0 1 0 0 5 > [36,] 0 1 0 0 6 > [37,] 0 0 1 0 1 > [38,] 0 0 1 0 2 > [39,] 0 0 1 0 3 > [40,] 0 0 1 0 4 > [41,] 0 0 1 0 5 > [42,] 0 0 1 0 6 > [43,] 0 0 1 0 1 > [44,] 0 0 1 0 2 > [45,] 0 0 1 0 3 > [46,] 0 0 1 0 4 > [47,] 0 0 1 0 5 > [48,] 0 0 1 0 6 > [49,] 0 0 1 0 1 > [50,] 0 0 1 0 2 > [51,] 0 0 1 0 3 > [52,] 0 0 1 0 4 > [53,] 0 0 1 0 5 > [54,] 0 0 1 0 6 > [55,] 0 0 0 1 1 > [56,] 0 0 0 1 2 > [57,] 0 0 0 1 3 > [58,] 0 0 0 1 4 > [59,] 0 0 0 1 5 > [60,] 0 0 0 1 6 > [61,] 0 0 0 1 1 > [62,] 0 0 0 1 2 > [63,] 0 0 0 1 3 > [64,] 0 0 0 1 4 > [65,] 0 0 0 1 5 > [66,] 0 0 0 1 6 > [67,] 0 0 0 1 1 > [68,] 0 0 0 1 2 > [69,] 0 0 0 1 3 > [70,] 0 0 0 1 4 > [71,] 0 0 0 1 5 > [72,] 0 0 0 1 6 > > What is the role of the contrast matrix? > > When I set up model.matrix(), there are too many comparisons: > >> design<-model.matrix(~factor(mat)) >> design > (Intercept) factor(mat)1 factor(mat)2 factor(mat)3 factor(mat)4 > factor(mat)5 factor(mat)6 > 1 1 1 0 0 > 0 0 0 > 2 1 1 0 0 > 0 0 0 > 3 1 1 0 0 > 0 0 0 > 4 1 1 0 0 > 0 0 0 > 5 1 1 0 0 > 0 0 0 > 6 1 1 0 0 > 0 0 0 > 7 1 1 0 0 > 0 0 0 > 8 1 1 0 0 > 0 0 0 > 9 1 1 0 0 > 0 0 0 > 10 1 1 0 0 > 0 0 0 > 11 1 1 0 0 > 0 0 0 > 12 1 1 0 0 > 0 0 0 > 13 1 1 0 0 > 0 0 0 > 14 1 1 0 0 > 0 0 0 > 15 1 1 0 0 > 0 0 0 > 16 1 1 0 0 > 0 0 0 > 17 1 1 0 0 > 0 0 0 > 18 1 1 0 0 > 0 0 0 > 19 1 0 0 0 > 0 0 0 > 20 1 0 0 0 > 0 0 0 > 21 1 0 0 0 > 0 0 0 > 22 1 0 0 0 > 0 0 0 > 23 1 0 0 0 > 0 0 0 > 24 1 0 0 0 > 0 0 0 > 25 1 0 0 0 > 0 0 0 > 26 1 0 0 0 > 0 0 0 > 27 1 0 0 0 > 0 0 0 > 28 1 0 0 0 > 0 0 0 > 29 1 0 0 0 > 0 0 0 > 30 1 0 0 0 > 0 0 0 > 31 1 0 0 0 > 0 0 0 > 32 1 0 0 0 > 0 0 0 > 33 1 0 0 0 > 0 0 0 > 34 1 0 0 0 > 0 0 0 > 35 1 0 0 0 > 0 0 0 > 36 1 0 0 0 > 0 0 0 > 37 1 0 0 0 > 0 0 0 > 38 1 0 0 0 > 0 0 0 > 39 1 0 0 0 > 0 0 0 > 40 1 0 0 0 > 0 0 0 > 41 1 0 0 0 > 0 0 0 > 42 1 0 0 0 > 0 0 0 > 43 1 0 0 0 > 0 0 0 > 44 1 0 0 0 > 0 0 0 > 45 1 0 0 0 > 0 0 0 > 46 1 0 0 0 > 0 0 0 > 47 1 0 0 0 > 0 0 0 > 48 1 0 0 0 > 0 0 0 > 49 1 0 0 0 > 0 0 0 > 50 1 0 0 0 > 0 0 0 > 51 1 0 0 0 > 0 0 0 > 52 1 0 0 0 > 0 0 0 > 53 1 0 0 0 > 0 0 0 > 54 1 0 0 0 > 0 0 0 > 55 1 0 0 0 > 0 0 0 > 56 1 0 0 0 > 0 0 0 > 57 1 0 0 0 > 0 0 0 > 58 1 0 0 0 > 0 0 0 > 59 1 0 0 0 > 0 0 0 > 60 1 0 0 0 > 0 0 0 > 61 1 0 0 0 > 0 0 0 > 62 1 0 0 0 > 0 0 0 > 63 1 0 0 0 > 0 0 0 > 64 1 0 0 0 > 0 0 0 > 65 1 0 0 0 > 0 0 0 > 66 1 0 0 0 > 0 0 0 > 67 1 0 0 0 > 0 0 0 > 68 1 0 0 0 > 0 0 0 > 69 1 0 0 0 > 0 0 0 > 70 1 0 0 0 > 0 0 0 > 71 1 0 0 0 > 0 0 0 > 72 1 0 0 0 > 0 0 0 > 73 1 0 0 0 > 0 0 0 > 74 1 0 0 0 > 0 0 0 > 75 1 0 0 0 > 0 0 0 > 76 1 0 0 0 > 0 0 0 > 77 1 0 0 0 > 0 0 0 > 78 1 0 0 0 > 0 0 0 > 79 1 0 0 0 > 0 0 0 > 80 1 0 0 0 > 0 0 0 > 81 1 0 0 0 > 0 0 0 > 82 1 0 0 0 > 0 0 0 > 83 1 0 0 0 > 0 0 0 > 84 1 0 0 0 > 0 0 0 > 85 1 0 0 0 > 0 0 0 > 86 1 0 0 0 > 0 0 0 > 87 1 0 0 0 > 0 0 0 > 88 1 0 0 0 > 0 0 0 > 89 1 0 0 0 > 0 0 0 > 90 1 0 0 0 > 0 0 0 > 91 1 1 0 0 > 0 0 0 > 92 1 1 0 0 > 0 0 0 > 93 1 1 0 0 > 0 0 0 > 94 1 1 0 0 > 0 0 0 > 95 1 1 0 0 > 0 0 0 > 96 1 1 0 0 > 0 0 0 > 97 1 1 0 0 > 0 0 0 > 98 1 1 0 0 > 0 0 0 > 99 1 1 0 0 > 0 0 0 > 100 1 1 0 0 > 0 0 0 > 101 1 1 0 0 > 0 0 0 > 102 1 1 0 0 > 0 0 0 > 103 1 1 0 0 > 0 0 0 > 104 1 1 0 0 > 0 0 0 > 105 1 1 0 0 > 0 0 0 > 106 1 1 0 0 > 0 0 0 > 107 1 1 0 0 > 0 0 0 > 108 1 1 0 0 > 0 0 0 > 109 1 0 0 0 > 0 0 0 > 110 1 0 0 0 > 0 0 0 > 111 1 0 0 0 > 0 0 0 > 112 1 0 0 0 > 0 0 0 > 113 1 0 0 0 > 0 0 0 > 114 1 0 0 0 > 0 0 0 > 115 1 0 0 0 > 0 0 0 > 116 1 0 0 0 > 0 0 0 > 117 1 0 0 0 > 0 0 0 > 118 1 0 0 0 > 0 0 0 > 119 1 0 0 0 > 0 0 0 > 120 1 0 0 0 > 0 0 0 > 121 1 0 0 0 > 0 0 0 > 122 1 0 0 0 > 0 0 0 > 123 1 0 0 0 > 0 0 0 > 124 1 0 0 0 > 0 0 0 > 125 1 0 0 0 > 0 0 0 > 126 1 0 0 0 > 0 0 0 > 127 1 0 0 0 > 0 0 0 > 128 1 0 0 0 > 0 0 0 > 129 1 0 0 0 > 0 0 0 > 130 1 0 0 0 > 0 0 0 > 131 1 0 0 0 > 0 0 0 > 132 1 0 0 0 > 0 0 0 > 133 1 0 0 0 > 0 0 0 > 134 1 0 0 0 > 0 0 0 > 135 1 0 0 0 > 0 0 0 > 136 1 0 0 0 > 0 0 0 > 137 1 0 0 0 > 0 0 0 > 138 1 0 0 0 > 0 0 0 > 139 1 0 0 0 > 0 0 0 > 140 1 0 0 0 > 0 0 0 > 141 1 0 0 0 > 0 0 0 > 142 1 0 0 0 > 0 0 0 > 143 1 0 0 0 > 0 0 0 > 144 1 0 0 0 > 0 0 0 > 145 1 0 0 0 > 0 0 0 > 146 1 0 0 0 > 0 0 0 > 147 1 0 0 0 > 0 0 0 > 148 1 0 0 0 > 0 0 0 > 149 1 0 0 0 > 0 0 0 > 150 1 0 0 0 > 0 0 0 > 151 1 0 0 0 > 0 0 0 > 152 1 0 0 0 > 0 0 0 > 153 1 0 0 0 > 0 0 0 > 154 1 0 0 0 > 0 0 0 > 155 1 0 0 0 > 0 0 0 > 156 1 0 0 0 > 0 0 0 > 157 1 0 0 0 > 0 0 0 > 158 1 0 0 0 > 0 0 0 > 159 1 0 0 0 > 0 0 0 > 160 1 0 0 0 > 0 0 0 > 161 1 0 0 0 > 0 0 0 > 162 1 0 0 0 > 0 0 0 > 163 1 0 0 0 > 0 0 0 > 164 1 0 0 0 > 0 0 0 > 165 1 0 0 0 > 0 0 0 > 166 1 0 0 0 > 0 0 0 > 167 1 0 0 0 > 0 0 0 > 168 1 0 0 0 > 0 0 0 > 169 1 0 0 0 > 0 0 0 > 170 1 0 0 0 > 0 0 0 > 171 1 0 0 0 > 0 0 0 > 172 1 0 0 0 > 0 0 0 > 173 1 0 0 0 > 0 0 0 > 174 1 0 0 0 > 0 0 0 > 175 1 0 0 0 > 0 0 0 > 176 1 0 0 0 > 0 0 0 > 177 1 0 0 0 > 0 0 0 > 178 1 0 0 0 > 0 0 0 > 179 1 0 0 0 > 0 0 0 > 180 1 0 0 0 > 0 0 0 > 181 1 1 0 0 > 0 0 0 > 182 1 1 0 0 > 0 0 0 > 183 1 1 0 0 > 0 0 0 > 184 1 1 0 0 > 0 0 0 > 185 1 1 0 0 > 0 0 0 > 186 1 1 0 0 > 0 0 0 > 187 1 1 0 0 > 0 0 0 > 188 1 1 0 0 > 0 0 0 > 189 1 1 0 0 > 0 0 0 > 190 1 1 0 0 > 0 0 0 > 191 1 1 0 0 > 0 0 0 > 192 1 1 0 0 > 0 0 0 > 193 1 1 0 0 > 0 0 0 > 194 1 1 0 0 > 0 0 0 > 195 1 1 0 0 > 0 0 0 > 196 1 1 0 0 > 0 0 0 > 197 1 1 0 0 > 0 0 0 > 198 1 1 0 0 > 0 0 0 > 199 1 0 0 0 > 0 0 0 > 200 1 0 0 0 > 0 0 0 > 201 1 0 0 0 > 0 0 0 > 202 1 0 0 0 > 0 0 0 > 203 1 0 0 0 > 0 0 0 > 204 1 0 0 0 > 0 0 0 > 205 1 0 0 0 > 0 0 0 > 206 1 0 0 0 > 0 0 0 > 207 1 0 0 0 > 0 0 0 > 208 1 0 0 0 > 0 0 0 > 209 1 0 0 0 > 0 0 0 > 210 1 0 0 0 > 0 0 0 > 211 1 0 0 0 > 0 0 0 > 212 1 0 0 0 > 0 0 0 > 213 1 0 0 0 > 0 0 0 > 214 1 0 0 0 > 0 0 0 > 215 1 0 0 0 > 0 0 0 > 216 1 0 0 0 > 0 0 0 > 217 1 0 0 0 > 0 0 0 > 218 1 0 0 0 > 0 0 0 > 219 1 0 0 0 > 0 0 0 > 220 1 0 0 0 > 0 0 0 > 221 1 0 0 0 > 0 0 0 > 222 1 0 0 0 > 0 0 0 > 223 1 0 0 0 > 0 0 0 > 224 1 0 0 0 > 0 0 0 > 225 1 0 0 0 > 0 0 0 > 226 1 0 0 0 > 0 0 0 > 227 1 0 0 0 > 0 0 0 > 228 1 0 0 0 > 0 0 0 > 229 1 0 0 0 > 0 0 0 > 230 1 0 0 0 > 0 0 0 > 231 1 0 0 0 > 0 0 0 > 232 1 0 0 0 > 0 0 0 > 233 1 0 0 0 > 0 0 0 > 234 1 0 0 0 > 0 0 0 > 235 1 0 0 0 > 0 0 0 > 236 1 0 0 0 > 0 0 0 > 237 1 0 0 0 > 0 0 0 > 238 1 0 0 0 > 0 0 0 > 239 1 0 0 0 > 0 0 0 > 240 1 0 0 0 > 0 0 0 > 241 1 0 0 0 > 0 0 0 > 242 1 0 0 0 > 0 0 0 > 243 1 0 0 0 > 0 0 0 > 244 1 0 0 0 > 0 0 0 > 245 1 0 0 0 > 0 0 0 > 246 1 0 0 0 > 0 0 0 > 247 1 0 0 0 > 0 0 0 > 248 1 0 0 0 > 0 0 0 > 249 1 0 0 0 > 0 0 0 > 250 1 0 0 0 > 0 0 0 > 251 1 0 0 0 > 0 0 0 > 252 1 0 0 0 > 0 0 0 > 253 1 0 0 0 > 0 0 0 > 254 1 0 0 0 > 0 0 0 > 255 1 0 0 0 > 0 0 0 > 256 1 0 0 0 > 0 0 0 > 257 1 0 0 0 > 0 0 0 > 258 1 0 0 0 > 0 0 0 > 259 1 0 0 0 > 0 0 0 > 260 1 0 0 0 > 0 0 0 > 261 1 0 0 0 > 0 0 0 > 262 1 0 0 0 > 0 0 0 > 263 1 0 0 0 > 0 0 0 > 264 1 0 0 0 > 0 0 0 > 265 1 0 0 0 > 0 0 0 > 266 1 0 0 0 > 0 0 0 > 267 1 0 0 0 > 0 0 0 > 268 1 0 0 0 > 0 0 0 > 269 1 0 0 0 > 0 0 0 > 270 1 0 0 0 > 0 0 0 > 271 1 1 0 0 > 0 0 0 > 272 1 1 0 0 > 0 0 0 > 273 1 1 0 0 > 0 0 0 > 274 1 1 0 0 > 0 0 0 > 275 1 1 0 0 > 0 0 0 > 276 1 1 0 0 > 0 0 0 > 277 1 1 0 0 > 0 0 0 > 278 1 1 0 0 > 0 0 0 > 279 1 1 0 0 > 0 0 0 > 280 1 1 0 0 > 0 0 0 > 281 1 1 0 0 > 0 0 0 > 282 1 1 0 0 > 0 0 0 > 283 1 1 0 0 > 0 0 0 > 284 1 1 0 0 > 0 0 0 > 285 1 1 0 0 > 0 0 0 > 286 1 1 0 0 > 0 0 0 > 287 1 1 0 0 > 0 0 0 > 288 1 1 0 0 > 0 0 0 > 289 1 1 0 0 > 0 0 0 > 290 1 0 1 0 > 0 0 0 > 291 1 0 0 1 > 0 0 0 > 292 1 0 0 0 > 1 0 0 > 293 1 0 0 0 > 0 1 0 > 294 1 0 0 0 > 0 0 1 > 295 1 1 0 0 > 0 0 0 > 296 1 0 1 0 > 0 0 0 > 297 1 0 0 1 > 0 0 0 > 298 1 0 0 0 > 1 0 0 > 299 1 0 0 0 > 0 1 0 > 300 1 0 0 0 > 0 0 1 > 301 1 1 0 0 > 0 0 0 > 302 1 0 1 0 > 0 0 0 > 303 1 0 0 1 > 0 0 0 > 304 1 0 0 0 > 1 0 0 > 305 1 0 0 0 > 0 1 0 > 306 1 0 0 0 > 0 0 1 > 307 1 1 0 0 > 0 0 0 > 308 1 0 1 0 > 0 0 0 > 309 1 0 0 1 > 0 0 0 > 310 1 0 0 0 > 1 0 0 > 311 1 0 0 0 > 0 1 0 > 312 1 0 0 0 > 0 0 1 > 313 1 1 0 0 > 0 0 0 > 314 1 0 1 0 > 0 0 0 > 315 1 0 0 1 > 0 0 0 > 316 1 0 0 0 > 1 0 0 > 317 1 0 0 0 > 0 1 0 > 318 1 0 0 0 > 0 0 1 > 319 1 1 0 0 > 0 0 0 > 320 1 0 1 0 > 0 0 0 > 321 1 0 0 1 > 0 0 0 > 322 1 0 0 0 > 1 0 0 > 323 1 0 0 0 > 0 1 0 > 324 1 0 0 0 > 0 0 1 > 325 1 1 0 0 > 0 0 0 > 326 1 0 1 0 > 0 0 0 > 327 1 0 0 1 > 0 0 0 > 328 1 0 0 0 > 1 0 0 > 329 1 0 0 0 > 0 1 0 > 330 1 0 0 0 > 0 0 1 > 331 1 1 0 0 > 0 0 0 > 332 1 0 1 0 > 0 0 0 > 333 1 0 0 1 > 0 0 0 > 334 1 0 0 0 > 1 0 0 > 335 1 0 0 0 > 0 1 0 > 336 1 0 0 0 > 0 0 1 > 337 1 1 0 0 > 0 0 0 > 338 1 0 1 0 > 0 0 0 > 339 1 0 0 1 > 0 0 0 > 340 1 0 0 0 > 1 0 0 > 341 1 0 0 0 > 0 1 0 > 342 1 0 0 0 > 0 0 1 > 343 1 1 0 0 > 0 0 0 > 344 1 0 1 0 > 0 0 0 > 345 1 0 0 1 > 0 0 0 > 346 1 0 0 0 > 1 0 0 > 347 1 0 0 0 > 0 1 0 > 348 1 0 0 0 > 0 0 1 > 349 1 1 0 0 > 0 0 0 > 350 1 0 1 0 > 0 0 0 > 351 1 0 0 1 > 0 0 0 > 352 1 0 0 0 > 1 0 0 > 353 1 0 0 0 > 0 1 0 > 354 1 0 0 0 > 0 0 1 > 355 1 1 0 0 > 0 0 0 > 356 1 0 1 0 > 0 0 0 > 357 1 0 0 1 > 0 0 0 > 358 1 0 0 0 > 1 0 0 > 359 1 0 0 0 > 0 1 0 > 360 1 0 0 0 > 0 0 1 > attr(,"assign") > [1] 0 1 1 1 1 1 1 > attr(,"contrasts") > attr(,"contrasts")$`factor(mat)` > [1] "contr.treatment" > > This does not work" > >> fit<-lmFit(sponge_ExpressionSet,design) > Error in lm.fit(design, t(M)) : incompatible dimensions >> exprs(sponge_data_matrix)->spongeExprs > Error in (function (classes, fdef, mtable) : > unable to find an inherited method for function ?exprs? for signature > ?"matrix"? > > > My ExpressionSet is built from scratch: > >> > sponge_ExpressionSet<-new("ExpressionSet",exprs=sponge_data_matrix,p henoData=pd,experimentData=experimentData,featureData=an) >> sponge_ExpressionSet > ExpressionSet (storageMode: lockedEnvironment) > assayData: 15744 features, 72 samples > element names: exprs > protocolData: none > phenoData > sampleNames: 1_1 1_2 ... 9_8 (72 total) > varLabels: Chip.Number File.Name ... percentlessthan0 (12 total) > varMetadata: labelDescription > featureData > featureNames: 1 2 ... 15744 (15744 total) > fvarLabels: Column Row ... X.1 (23 total) > fvarMetadata: labelDescription > experimentData: use 'experimentData(object)' > Annotation: > > [[alternative HTML version deleted]] > > > > _______________________________________________ > Bioconductor mailing list > Bioconductor at r-project.org > https://stat.ethz.ch/mailman/listinfo/bioconductor > Search the archives: http://news.gmane.org/gmane.science.biology.informatics.conductor
ADD COMMENTlink written 4.1 years ago by Ryan C. Thompson6.1k
Please log in to add an answer.

Help
Access

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.
Powered by Biostar version 2.2.0
Traffic: 151 users visited in the last hour