Entering edit mode
Hi Bioconductor Developers and Users,
I've a question regard dmpFinder method in Minfi package 1.8.9,
in particular for shrinkVar argument.
I usually calculate dmp both set shrinkVar=TRUE both set
shrinkVar=FALSE
with the following method calls:
1) dmpOne <- dmpFinder(myMvalue.byMyGenomicRatioSet,
pheno=myPhenoData$Sample_Group, type="categorical", shrinkVar=TRUE)
2) dmpTwo <- dmpFinder(myMvalue.byMyGenomicRatioSet,
pheno=myPhenoData$Sample_Group, type="categorical")
and I've a variable number of significance estimates (qval < 0.05) on
the
two result objects.
In a dataset of 44 samples I've 207020 significance estimates on
dmpOne and
207382 on dmpTwo.
In a dataset of 13 samples I've 67 significance estimates on dmpOne
and 19
significance estimates on dmpTwo.
Now in a dataset of 9 samples I've 21 significance estimates on dmpOne
and
3102 on dmpTwo.
So I was wondering which of the two result objects should I choose?
The one
with the greatest number of significance estimates?
In the manual shrinkVar=TRUE is recommended when sample sizes are
small
(<10), but sample sizes refers to the number of samples?
It is also recommended but not "required".
Thanks in advance,
Giovanni
Laboratory of Preclinical and Translational Research
IRCCS - CROB Oncology Referral Center of Basilicata
Rionero in Vulture - Italy
***** sessionInfo *****
R version 3.0.1 (2013-05-16)
Platform: x86_64-unknown-linux-gnu (64-bit)
locale:
[1] LC_CTYPE=en_GB.UTF-8 LC_NUMERIC=C
LC_TIME=en_GB.UTF-8
[4] LC_COLLATE=en_GB.UTF-8 LC_MONETARY=en_GB.UTF-8
LC_MESSAGES=en_GB.UTF-8
[7] LC_PAPER=C LC_NAME=C
LC_ADDRESS=C
[10] LC_TELEPHONE=C LC_MEASUREMENT=en_GB.UTF-8
LC_IDENTIFICATION=C
attached base packages:
[1] parallel stats graphics grDevices utils datasets
methods
base
other attached packages:
[1] IMA_3.1.2
[2] dplR_1.5.9
[3] preprocessCore_1.24.0
[4] bioDist_1.34.0
[5] KernSmooth_2.23-12
[6] MASS_7.3-31
[7] limma_3.18.13
[8] WriteXLS_3.5.0
[9] doParallel_1.0.8
[10] lumi_2.14.2
[11] IlluminaHumanMethylation450kanno.ilmn12.hg19_0.2.1
[12] IlluminaHumanMethylation450kmanifest_0.4.0
[13] minfi_1.8.9
[14] bumphunter_1.2.0
[15] locfit_1.5-9.1
[16] iterators_1.0.7
[17] foreach_1.4.2
[18] Biostrings_2.30.1
[19] GenomicRanges_1.14.4
[20] XVector_0.2.0
[21] IRanges_1.20.7
[22] reshape_0.8.5
[23] lattice_0.20-29
[24] Biobase_2.22.0
[25] BiocGenerics_0.8.0
[26] BiocInstaller_1.12.1
loaded via a namespace (and not attached):
[1] affy_1.40.0 affyio_1.30.0 annotate_1.40.1
AnnotationDbi_1.24.0
[5] base64_1.1 beanplot_1.1 biomaRt_2.18.0
bitops_1.0-6
[9] BSgenome_1.30.0 codetools_0.2-8 colorspace_1.2-4
DBI_0.2-7
[13] digest_0.6.4 doRNG_1.6 genefilter_1.44.0
GenomicFeatures_1.14.5
[17] gmp_0.5-11 grid_3.0.1 illuminaio_0.4.0
itertools_0.1-3
[21] Matrix_1.1-3 matrixStats_0.8.14 mclust_4.3
methylumi_2.8.0
[25] mgcv_1.7-29 multtest_2.18.0 nleqslv_2.1.1
nlme_3.1-117
[29] nor1mix_1.1-4 pkgmaker_0.20 plyr_1.8.1
RColorBrewer_1.0-5
[33] Rcpp_0.11.1 RCurl_1.95-4.1 registry_0.2
R.methodsS3_1.6.1
[37] rngtools_1.2.4 Rsamtools_1.14.3 RSQLite_0.11.4
rtracklayer_1.22.7
[41] siggenes_1.36.0 splines_3.0.1 stats4_3.0.1
stringr_0.6.2
[45] survival_2.37-7 tools_3.0.1 XML_3.98-1.1
xtable_1.7-3
[49] zlibbioc_1.8.0
***** End sessionInfo *****
[[alternative HTML version deleted]]