Hello Forum,
I am doing gene expression analysis using limma package. After reducing the number of tests through filtering of genes, I am getting higher adjusted p values. Just curious, what is causing this, probably no significant differences in signals.
I appreciate any insight.
Thanks,
R code:
setwd("C:/Users/chaudhak/Desktop/Michelle_celfiels/Heart/CDCB vs HFDM")
getwd()
library(affy)
Mydata<-ReadAffy()   ### reading in the celfiles 
Mydata
phenoData(eset)                 ### phenotypic data
pData(eset)$case=c("CD.ND","CD.ND","CD.ND","CD.ND","CD.ND","CD.ND","CD.ND","CD.ND",
                   "HF.DM","HF.DM","HF.DM","HF.DM","HF.DM")      ### phenotype dataframe
pData(eset)
library(limma)
Group<- as.factor(pData(eset)[,2])
design<-model.matrix(~0+Group)
colnames(design)<-c("CD.DM","HF.DM")
contrast.matrix<-makeContrasts(
                   CD.DM VS HF.DM=(CD.DM-HF.DM),
                   levels=design)
fit <- lmFit(eset, design)  
fit2 <- contrasts.fit(fit, contrast.matrix)
fit2 <- eBayes(fit2)
colnames(fit2)
topTable(fit2,coef=1,adjust="fdr")  
                    
                
                
Hi Jim,
I am filtering the genes at eset object.
source("http://bioconductor.org/biocLite.R")
biocLite("ragene10sttranscriptcluster.db")
biocLite("ALL")
library(ragene10sttranscriptcluster.db)
library(genefilter)
annotation(eset) <- "ragene10sttranscriptcluster.db"
celfiles.filt<- nsFilter(eset,require.entrez=TRUE, var.cutoff =0.5)$eset
celfiles.filt$filter.log
dim(celfiles.filt)
mat1<-exprs(celfiles.filt)
dim(mat1)
head(mat1)
sessionInfo()
I was wondering how to select genes after ebayes() step?
Thanks for your help.