Hi,
I have run a DEXseq anlysis of my data, which consist of two different conditions (TG/WT) and in two different studies (S3/S5). I would like to retrieve the result tables only concerning the condition effect, where the study effect is removed. The reason why I ask for this function, is because I have worked with with the same date in a multifactor desing in DESeq2, where you provide a contrast argument. This is an example from the DESeq2 vignette:
resMFType <- results(ddsMF, contrast=c("type","single-read","paired-end"))
Is there some how an equivalent method for DEXSeq, since it is built on the same statistics and so on...
Below you can see my sample annotaions for my DEXSeqdatasat and code. I have specified two design formulae, which indicate that the StudyType factor should be treated as a blocking factor:
> sampleAnnotation(dxdC)
DataFrame with 37 rows and 5 columns
sample condition study tissue sizeFactor
<factor> <factor> <factor> <factor> <numeric>
1 18C_Ctx_z_15q_WT WT S3 Ctx 1.048548
2 19C_Ctx_z_15q_WT WT S3 Ctx 1.146222
3 20C_Ctx_z_15q_WT WT S3 Ctx 1.083607
4 21C_Ctx_z_15q_WT WT S3 Ctx 1.155945
5 22C_Ctx_z_15q_WT WT S3 Ctx 1.145483
... ... ... ... ... ...
33 148E_Ctx_Week18_15q_TG TG S5 Ctx 0.9056882
34 149E_Ctx_Week18_15q_TG TG S5 Ctx 0.9465755
35 150E_Ctx_Week18_15q_TG TG S5 Ctx 0.7392238
36 151E_Ctx_Week18_15q_TG TG S5 Ctx 0.9036385
37 152E_Ctx_Week18_15q_TG TG S5 Ctx 1.1340215
formulaFullModel = ~ sample + exon + study:exon + condition:exon
formulaReducedModel = ~ sample + exon + study:exon
dxdC = estimateDispersions( dxdC, BPPARAM=BPPARAM, formula = formulaFullModel )
dxdC = testForDEU( dxdC,
reducedModel = formulaReducedModel,
fullModel = formulaFullModel, BPPARAM=BPPARAM )
dxrC = DEXSeqResults( dxdC )
Thanks a lot for your time,
Best, Maria Dalby
> sessionInfo()
R version 3.1.2 (2014-10-31)
Platform: x86_64-unknown-linux-gnu (64-bit)
locale:
[1] C
attached base packages:
[1] stats4 parallel stats graphics grDevices utils datasets
[8] methods base
other attached packages:
[1] DEXSeq_1.12.1 BiocParallel_1.0.1
[3] DESeq2_1.6.3 RcppArmadillo_0.4.600.4.0
[5] Rcpp_0.11.4 GenomicRanges_1.18.4
[7] GenomeInfoDb_1.2.4 IRanges_2.0.1
[9] S4Vectors_0.4.0 Biobase_2.26.0
[11] BiocGenerics_0.12.1
loaded via a namespace (and not attached):
[1] AnnotationDbi_1.28.1 BBmisc_1.8 BatchJobs_1.5
[4] Biostrings_2.34.1 DBI_0.3.1 Formula_1.2-0
[7] Hmisc_3.14-6 MASS_7.3-37 RColorBrewer_1.1-2
[10] RCurl_1.95-4.5 RSQLite_1.0.0 Rsamtools_1.18.2
[13] XML_3.98-1.1 XVector_0.6.0 acepack_1.3-3.3
[16] annotate_1.44.0 base64enc_0.1-2 biomaRt_2.22.0
[19] bitops_1.0-6 brew_1.0-6 checkmate_1.5.1
[22] cluster_1.15.3 codetools_0.2-10 colorspace_1.2-4
[25] digest_0.6.8 fail_1.2 foreach_1.4.2
[28] foreign_0.8-62 genefilter_1.48.1 geneplotter_1.44.0
[31] ggplot2_1.0.0 grid_3.1.2 gtable_0.1.2
[34] hwriter_1.3.2 iterators_1.0.7 lattice_0.20-29
[37] latticeExtra_0.6-26 locfit_1.5-9.1 munsell_0.4.2
[40] nnet_7.3-8 plyr_1.8.1 proto_0.3-10
[43] reshape2_1.4.1 rpart_4.1-8 scales_0.2.4
[46] sendmailR_1.2-1 splines_3.1.2 statmod_1.4.20
[49] stringr_0.6.2 survival_2.37-7 tools_3.1.2
[52] xtable_1.7-4 zlibbioc_1.12.0