Modeling count data that is zero inflated with negative binomial hurdle regression
0
0
Entering edit mode
mrk.carty ▴ 30
@mrkcarty-7442
Last seen 9.1 years ago
United States

Hi all,

I am modeling count data that is zero-inflated. To model the data, I am using hurdle() function from the R pscl package. I am also refitting the model after the removal of outlier points. I have written a function to remove outliers from the data set. However, I think there is a bug in the code because the nothing as been removed. I noticed that gc and map covariates are not significant for non-zero part of the model, when I omit them I get better results. When I set map as an offset, the gc is very significant for the zero part of the model.  I am wondering if this happening because these two covariates explain so little of variance.

Here is the code:

library(pscl)
library(VGAM)
library(data.table)
library(splines)

# Define function

remove.outliers <- function(dat,mod,f=qzanegbin){
  q1 <- f(0.025,size = mod$theta, munb=predict(mod,newdata = dat,
        dispersion = 1/mod$theta,type='response'),pobs=predprob(mod,newdata=dat)[,1])
  q2 <- f(0.975,size = mod$theta, munb=predict(mod,newdata = dat,
        dispersion = 1/mod$theta,type='response'),pobs=predprob(mod,newdata=dat)[,1])
  q <- sapply(seq(0,0.99,by=0.05),function(k) f(k,size = mod$theta,
        munb=predict(mod,newdata = dat,dispersion = 1/mod$theta,type='response'),
        pobs=predprob(mod,newdata=dat)[,1]))
  H <- apply(q,1,function(x){1.5*IQR(x)})
  counts <- dat$counts
  counts[counts < q1 - H] <- NA
  counts[counts > q2 + H] <- NA
  new.dat <- dat[which(!is.na(counts)),]
  return(new.dat)
}

# Main body of algorithm
x <- readRDS('WorkinProgress/Data.rds')
nrows <- nrow(x)
Intervals <- seq(0,2e6,by=500)
cls <- findInterval(x$D,Intervals,rightmost.closed = T)
# Binning the distances
bins <- split(seq_len(nrows),cls)
# Sampling 10% of data from each bin
idx <- unlist(lapply(bins,function(x){sample(x,floor(length(x)*0.01),replace = F)}))
dat <- x[idx,]
# Knots
knots <- quantile(dat$D,probs = c(0.25,0.5,0.75))
bdpts <- quantile(dat$D,probs=c(0,1))
df <- 6 # degrees of freedom

mod <- hurdle(counts ~ gc + map + bs(D,df=df,knots=c(knots),
      Boundary.knots=c(bdpts))| gc + map + bs(D,df=df,knots=c(knots),
      Boundary.knots=c(bdpts)),data=dat,dist='negbin')

# Remove outliers
new.dat <- remove.outliers(dat,mod)
# Refit the model
mod <- hurdle(counts ~ gc + map + bs(D,df=df,knots=c(knots),
        Boundary.knots=c(bdpts))| gc + map + bs(D,df=df,knots=c(knots),
        Boundary.knots=c(bdpts)),data=new.dat,dist='negbin')


> x
          counts     D         gc        map
       1:      2   239 -1.6960761 -0.6069708
       2:      2  4011 -1.1518852 -0.6399841
       3:      3  8875 -0.7788370 -0.5767152
       4:      0 14045 -1.1544460 -0.4697568
       5:      0 17502 -1.4958545 -0.6374427
      ---                                   
16053150:      7 16926  0.4619302 -0.6723117
16053151:     10  4429  0.6345688 -0.6723117
16053152:      4  7942  0.9654208 -0.6723117
16053153:      4  3309  1.4065476 -0.6723117
16053154:     20   307  1.2228625 -0.6723117
> length(which(x$counts==0))
[1] 14271361

cor(x,method = 'spearman')
             counts             D           gc           map
counts  1.000000000 -0.3445307605  0.003804754 -0.0034717774
D      -0.344530761  1.0000000000 -0.006490156 -0.0003908146
gc      0.003804754 -0.0064901556  1.000000000 -0.1263421203
map    -0.003471777 -0.0003908146 -0.126342120  1.0000000000

summary(mod)

Call:
hurdle(formula = counts ~ gc + map + bs(D, df = df, knots = c(knots), Boundary.knots = c(bdpts)) |
    gc + map + bs(D, df = df, knots = c(knots), Boundary.knots = c(bdpts)), data = new.dat,
    dist = "negbin")

Pearson residuals:
    Min      1Q  Median      3Q     Max
-0.9878 -0.2939 -0.1931 -0.1546 25.157

 sessionInfo()
R version 3.1.2 (2014-10-31)
Platform: x86_64-apple-darwin13.4.0 (64-bit)

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] splines   stats4    stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] data.table_1.9.4 VGAM_0.9-7       pscl_1.4.8       lattice_0.20-30  MASS_7.3-39     

loaded via a namespace (and not attached):
[1] chron_2.3-45   grid_3.1.2     plyr_1.8.1     Rcpp_0.11.5    reshape2_1.4.1 stringr_0.6.2
[7] tools_3.1.2  

 

 

pscl outliers • 2.4k views
ADD COMMENT

Login before adding your answer.

Traffic: 387 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6