Dear all,
First of all: I apologise if this question has been answered before. Please feel free to direct me elsewhere.
I have a dataset that I'm analysing using a paired (SibShip type) model. I'd like to ask how I can interpret the adjusted p values from the complete topTable() command. And how/why those adjusted p values may differ from those generated by topTable() when specifying the coefficient.
A minimal working example and sessionInfo()
are shown below. To clarify with respect to this specific example, I'd like to know what the values of topTable(fit)$adj.P.Val
mean (in the context of a paired analysis) and why the values of topTable(fit,coef="treatment")$adj.P.Val
are different.
Thanks and best wishes,
Lisa
set.seed(5482)
sd <- 0.3*sqrt(4/rchisq(100,df=4))
y <- matrix(rnorm(100*6,sd=sd),100,6)
rownames(y) <- paste("Gene",1:100)
y[1:2,4:6] <- y[1:2,4:6] + 2
design <- cbind(sample=c(0,1,0,1,0,1),treatment=c(0,0,0,1,1,1))
fit <- lmFit(y,design)
fit <- eBayes(fit)
topTable(fit)
topTable(fit,coef="treatment")
> sessionInfo() R version 3.1.0 (2014-04-10) Platform: x86_64-apple-darwin10.8.0 (64-bit) locale: [1] en_GB.UTF-8/en_GB.UTF-8/en_GB.UTF-8/C/en_GB.UTF-8/en_GB.UTF-8 attached base packages: [1] stats4 parallel stats graphics grDevices utils datasets methods base other attached packages: [1] edgeR_3.8.6 Rsubread_1.16.1 pd.hugene.1.0.st.v1_3.10.0 [4] oligo_1.30.0 Biostrings_2.34.1 XVector_0.6.0 [7] oligoClasses_1.28.0 hgu133plus2cdf_2.15.0 hgu133acdf_2.15.0 [10] readxl_0.1.0 affy_1.44.0 limma_3.22.7 [13] org.Hs.eg.db_3.0.0 RSQLite_1.0.0 DBI_0.3.1 [16] GSEABase_1.28.0 graph_1.44.1 annotate_1.44.0 [19] XML_3.98-1.1 AnnotationDbi_1.28.2 GenomeInfoDb_1.2.5 [22] IRanges_2.0.1 S4Vectors_0.4.0 Biobase_2.26.0 [25] BiocGenerics_0.12.1 biomaRt_2.22.0 RColorBrewer_1.1-2 [28] gplots_2.17.0 ggplot2_1.0.1 reshape_0.8.5 loaded via a namespace (and not attached): [1] affxparser_1.38.0 affyio_1.34.0 BiocInstaller_1.16.5 bit_1.1-12 [5] bitops_1.0-6 caTools_1.17.1 codetools_0.2-11 colorspace_1.2-6 [9] digest_0.6.8 ff_2.2-13 foreach_1.4.2 gdata_2.16.1 [13] GenomicRanges_1.18.4 grid_3.1.0 gtable_0.1.2 gtools_3.4.2 [17] iterators_1.0.7 KernSmooth_2.23-14 labeling_0.3 magrittr_1.5 [21] MASS_7.3-40 munsell_0.4.2 plyr_1.8.2 preprocessCore_1.28.0 [25] proto_0.3-10 Rcpp_0.11.6 RCurl_1.95-4.6 reshape2_1.4.1 [29] scales_0.2.4 splines_3.1.0 stringi_0.4-1 stringr_1.0.0 [33] tools_3.1.0 xtable_1.7-4 zlibbioc_1.12.0
It is pointed out in the help for topTable, but buried in the Details section:
Thank you for your very fast reply James, I really appreciate it.
Lisa