Hi,
I was trying to use DESeq2 to find differential abundances in two sets of microbiome (16s) data. I seem to get a lot of p-values that are NA (about 10% of p-values are NA). Here is my code and some results:
> myds
class: DESeqDataSet
dim: 598 50
metadata(0):
assays(1): counts
rownames(708): 192963 4465907 ... 189592 580008
rowRanges metadata column names(0):
colnames(50): Sample135 Sample246 ... Sample25 Sample11
colData names(15): Lab_ID Stool_Num ... amount_mg
> myres <- DESeq(myds)
> res <- results(myres)
> head(res)
log2 fold change (MAP): phenotype case vs control
Wald test p-value: phenotype case vs control
DataFrame with 6 rows and 6 columns
baseMean log2FoldChange lfcSE stat pvalue padj
<numeric> <numeric> <numeric> <numeric> <numeric> <numeric>
189592 8.434254 1.0976058 0.5416153 2.0265414 4.270934e-02 0.269364834
4465907 9.357253 -0.8675216 0.5354922 -1.6200452 1.052226e-01 0.384802311
177310 61.323202 1.8968030 0.8038772 2.3595680 1.829623e-02 0.173950686
4364222 35.717973 -0.1593546 0.8631786 -0.1846137 NA NA
194107 9.983001 1.4331188 0.5869212 2.4417565 1.461600e-02 0.152629370
189110 43.982965 4.1196519 1.0192709 4.0417634 5.305074e-05 0.005019356
Why am I getting so many NAs? Should I be using different/additional arguments for the DESeq function?
thanks!!