Hi,
After updating to ggplot2 2.0 some of my visualisation code broke and in trying to figure out why, this behaviour concerned me. Running an internal ggplot2 function such as geom_point after the base call of ggplot(), it appears as if geom_point doesn't inherit the data structures from the original ggplot() call.
Example:
test <- data.frame(a = 1:100, b = 801:900)
ggplot(test, aes(x=a, y=b)) + geom_point()
Error: geom_point requires the following missing aesthetics: x, y
Is this explicit defining of aesthetics in each internal ggplot2 call now the default behaviour?
session info:
R version 3.2.3 (2015-12-10) Platform: x86_64-apple-darwin13.4.0 (64-bit) Running under: OS X 10.11.2 (El Capitan) locale: [1] en_GB.UTF-8/en_GB.UTF-8/en_GB.UTF-8/C/en_GB.UTF-8/en_GB.UTF-8 attached base packages: [1] grid stats4 parallel stats graphics grDevices utils datasets [9] methods base other attached packages: [1] IlluminaHumanMethylation450kanno.ilmn12.hg19_0.2.1 [2] biomaRt_2.26.1 [3] GenomicFeatures_1.22.7 [4] AnnotationDbi_1.32.3 [5] biovizBase_1.18.0 [6] ggbio_1.18.1 [7] cowplot_0.6.0 [8] gridExtra_2.0.0 [9] doParallel_1.0.10 [10] IlluminaHumanMethylation450kmanifest_0.4.0 [11] scales_0.3.0 [12] reshape2_1.4.1 [13] ggplot2_2.0.0 [14] limma_3.26.4 [15] lumi_2.22.0 [16] minfi_1.16.0 [17] bumphunter_1.10.0 [18] locfit_1.5-9.1 [19] iterators_1.0.8 [20] foreach_1.4.3 [21] Biostrings_2.38.3 [22] XVector_0.10.0 [23] SummarizedExperiment_1.0.2 [24] GenomicRanges_1.22.3 [25] GenomeInfoDb_1.6.1 [26] IRanges_2.4.6 [27] S4Vectors_0.8.7 [28] lattice_0.20-33 [29] Biobase_2.30.0 [30] BiocGenerics_0.16.1 loaded via a namespace (and not attached): [1] nlme_3.1-122 bitops_1.0-6 matrixStats_0.50.1 [4] RColorBrewer_1.1-2 tools_3.2.3 doRNG_1.6 [7] nor1mix_1.2-1 affyio_1.40.0 rpart_4.1-10 [10] KernSmooth_2.23-15 Hmisc_3.17-1 DBI_0.3.1 [13] mgcv_1.8-10 colorspace_1.2-6 nnet_7.3-11 [16] methylumi_2.16.0 GGally_1.0.0 base64_1.1 [19] preprocessCore_1.32.0 graph_1.48.0 pkgmaker_0.22 [22] labeling_0.3 rtracklayer_1.30.1 genefilter_1.52.0 [25] quadprog_1.5-5 affy_1.48.0 RBGL_1.46.0 [28] stringr_1.0.0 digest_0.6.8 Rsamtools_1.22.0 [31] foreign_0.8-66 illuminaio_0.12.0 siggenes_1.44.0 [34] GEOquery_2.36.0 dichromat_2.0-0 BSgenome_1.38.0 [37] RSQLite_1.0.0 BiocInstaller_1.20.1 mclust_5.1 [40] BiocParallel_1.4.3 acepack_1.3-3.3 VariantAnnotation_1.16.4 [43] RCurl_1.95-4.7 magrittr_1.5 Formula_1.2-1 [46] futile.logger_1.4.1 Matrix_1.2-3 Rcpp_0.12.2 [49] munsell_0.4.2 stringi_1.0-1 nleqslv_2.9.1 [52] MASS_7.3-45 zlibbioc_1.16.0 plyr_1.8.3 [55] splines_3.2.3 multtest_2.26.0 annotate_1.48.0 [58] beanplot_1.2 igraph_1.0.1 rngtools_1.2.4 [61] corpcor_1.6.8 codetools_0.2-14 mixOmics_5.2.0 [64] futile.options_1.0.0 XML_3.98-1.3 latticeExtra_0.6-26 [67] lambda.r_1.1.7 gtable_0.1.2 reshape_0.8.5 [70] xtable_1.8-0 survival_2.38-3 OrganismDbi_1.12.1 [73] GenomicAlignments_1.6.3 registry_0.3 ellipse_0.3-8 [76] cluster_2.0.3 rgl_0.95.1441
Edit: Sorry, I forgot ggplot2 is in CRAN, not Bioconductor!
Edit2: Cross Posted Here for those interested