Dear all,
I am new to RNASeq analysis and have found the relevant packages that exist in bioconductor really useful.
I have Readcounts from RNA-seq experiments each having 3 replicates.
Genotype Treatment Time_hrs Replicate
BM1_WTUT WT UT 0 1
BM2_WTUT WT UT 0 2
BM3_WTUT WT UT 0 3
BM1_WTi8 WT Stimuli1+Stimuli2 8 1
BM2_WTi8 WT Stimuli1+Stimuli2 8 2
BM3_WTi8 WT Stimuli1+Stimuli2 8 3
BM1_WTi2 WT Stimuli1+Stimuli2 2 1
BM2_WTi2 WT Stimuli1+Stimuli2 2 2
BM3_WTi2 WT Stimuli1+Stimuli2 2 3
BM1_WT8 WT Stimuli1 8 1
BM2_WT8 WT Stimuli1 8 2
BM3_WT8 WT Stimuli1 8 3
BM1_WT2 WT Stimuli1 2 1
BM2_WT2 WT Stimuli1 2 2
BM3_WT2 WT Stimuli1 2 3
BM1_FLUT KO UT 0 1
BM2_FLUT KO UT 0 2
BM3_FLUT KO UT 0 3
BM1_FLi8 KO Stimuli1+Stimuli2 8 1
BM2_FLi8 KO Stimuli1+Stimuli2 8 2
BM3_FLi8 KO Stimuli1+Stimuli2 8 3
BM1_FLi2 KO Stimuli1+Stimuli2 2 1
BM2_FLi2 KO Stimuli1+Stimuli2 2 2
BM3_FLi2 KO Stimuli1+Stimuli2 2 3
BM1_FL8 KO Stimuli1 8 1
BM2_FL8 KO Stimuli1 8 2
BM3_FL8 KO Stimuli1 8 3
BM1_FL2 KO Stimuli1 2 1
BM2_FL2 KO Stimuli1 2 2
BM3_FL2 KO Stimuli1 2 3
I would like to test the effect(s) of different Treatments and different time points on genotype. As you see in the table, I have two levels in Genotype, three levels in Treatment and 3 levels in Time_hrs.
In my design, I have used:
dds_genotype.treatment.2h <- DESeqDataSetFromMatrix(countData = ReadCounts.new.genotype.treatment.2h, colData = colData.new.genotype.treatment.2h, design=~Genotype + Treatment + Genotype:Treatment)
and
res <- results(dds, contrast=c("Genotype","KO", "WT"), pAdjustMethod = "BH")
But I guess this does not allow me to distinguish between the potential impact of treatment at different time points on genotype.
Could you please suggest me of potential ways of analyzing these data? The linear model has to incorporate all of these variables I guess.
Many thanks,
Dimitris