Entering edit mode
crysis405
▴
10
@crysis405-10875
Last seen 6.9 years ago
Error when launching shiny app in cytofkit:
launchShinyAPP_GUI("F:/Sync/cytometry/resultsQC/cytofkit.RData")
Error in FUN(X[[i]], ...) :
cannot open file '~/R/win-library/3.3/reshape2/data/Rdata.rdb': No such file or directory
The file does exist:
> list.files('~/R/win-library/3.3/reshape2/data/')
[1] "Rdata.rdb" "Rdata.rds" "Rdata.rdx"
Session info:
R version 3.3.0 (2016-05-03) Platform: x86_64-w64-mingw32/x64 (64-bit) Running under: Windows 7 x64 (build 7601) Service Pack 1 locale: [1] LC_COLLATE=English_United Kingdom.1252 LC_CTYPE=English_United Kingdom.1252 LC_MONETARY=English_United Kingdom.1252 [4] LC_NUMERIC=C LC_TIME=English_United Kingdom.1252 attached base packages: [1] stats graphics grDevices utils datasets methods base other attached packages: [1] reshape2_1.4.1 gplots_3.0.1 shiny_0.13.2 cytofkit_1.4.3 plyr_1.8.4 ggplot2_2.1.0 loaded via a namespace (and not attached): [1] gtools_3.5.0 splines_3.3.0 lattice_0.20-33 tcltk_3.3.0 pcaPP_1.9-60 colorspace_1.2-6 htmltools_0.3.5 [8] stats4_3.3.0 mgcv_1.8-12 flowCore_1.38.2 e1071_1.6-7 BiocGenerics_0.18.0 matrixStats_0.50.2 foreach_1.4.3 [15] robustbase_0.92-6 stringr_1.0.0 munsell_0.4.3 pdist_1.2 gtable_0.2.0 caTools_1.17.1 mvtnorm_1.0-5 [22] codetools_0.2-14 VGAM_1.0-2 Biobase_2.32.0 permute_0.9-0 doParallel_1.0.10 httpuv_1.3.3 parallel_3.3.0 [29] class_7.3-14 DEoptimR_1.0-4 Rcpp_0.12.5 KernSmooth_2.23-15 xtable_1.8-2 corpcor_1.6.8 scales_0.4.0 [36] gdata_2.17.0 vegan_2.3-5 graph_1.50.0 mime_0.4 RANN_2.5 digest_0.6.9 stringi_1.1.1 [43] Rtsne_0.10 grid_3.3.0 tools_3.3.0 bitops_1.0-6 magrittr_1.5 cluster_2.0.4 rrcov_1.3-11 [50] Matrix_1.2-6 MASS_7.3-45 reshape_0.8.5 iterators_1.0.8 R6_2.1.2 igraph_1.0.1 nlme_3.1-128
Traceback:
> traceback()
14: FUN(X[[i]], ...)
13: vapply(same, exists, NA, where = where, mode = "function", inherits = FALSE)
12: same.isFn(i)
11: checkConflicts(package, pkgname, pkgpath, nogenerics, ns)
10: library(reshape)
9: ..stacktraceon..({
library(ggplot2)
library(gplots)
library(reshape2)
library(reshape)
library(plyr)
library(VGAM)
visuaPlot <- function(obj, xlab, ylab, zlab, pointSize = 1,
addLabel = TRUE, labelSize = 1, selectSamples, removeOutlier = TRUE) {
data <- cbind(obj$allExpressionData, do.call(cbind, obj$dimReducedRes))
data <- as.data.frame(data)
clusterMethods <- names(obj$clusterRes)
for (cname in clusterMethods) {
data[[cname]] <- as.factor(obj$clusterRes[[cname]])
}
row.names(data) <- row.names(obj$expressionData)
samples <- sub("_[0-9]*$", "", row.names(obj$expressionData))
data <- data[samples %in% selectSamples, ]
nsamples <- samples[samples %in% selectSamples]
data$sample <- nsamples
sample_num <- length(unique(nsamples))
if (sample_num >= 8) {
shape_value <- LETTERS[1:sample_num]
}
else {
shape_value <- c(1:sample_num) + 15
}
if (zlab %in% clusterMethods) {
cluster_num <- length(unique(data[[zlab]]))
col_legend_row <- ceiling(cluster_num/15)
size_legend_row <- ceiling(sample_num/4)
shapeLab <- "sample"
gp <- ggplot(data, aes_string(x = xlab, y = ylab,
colour = zlab, shape = shapeLab)) + geom_point(size = pointSize) +
scale_shape_manual(values = shape_value) + scale_colour_manual(values = rainbow(cluster_num)) +
xlab(xlab) + ylab(ylab) + guides(colour = guide_legend(nrow = col_legend_row,
override.aes = list(size = 4)), shape = guide_legend(nrow = size_legend_row,
override.aes = list(size = 4))) + theme_bw() +
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank())
if (addLabel) {
edata <- data[, c(xlab, ylab, zlab)]
colnames(edata) <- c("x", "y", "z")
center <- aggregate(cbind(x, y) ~ z, data = edata,
median)
gp <- gp + annotate("text", label = center[,
1], x = center[, 2], y = center[, 3], size = labelSize,
colour = "black")
}
gp <- gp + theme(legend.position = "bottom", axis.text = element_text(size = 14),
axis.title = element_text(size = 18, face = "bold"))
}
else {
title <- zlab
data <- data[, c(xlab, ylab, zlab)]
if (removeOutlier)
data[, zlab] <- remove_outliers(data[, zlab])
zlab <- "Expression"
colnames(data) <- c(xlab, ylab, zlab)
gp <- ggplot(data, aes_string(x = xlab, y = ylab,
colour = zlab)) + geom_point(size = pointSize) +
theme_bw() + scale_colour_gradient2(low = "blue",
mid = "white", high = "red", midpoint = median(data[[zlab]])) +
theme(legend.position = "right") + xlab(xlab) +
ylab(ylab) + ggtitle(title) + theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank()) + theme(axis.text = element_text(size = 14),
axis.title = element_text(size = 18, face = "bold"))
}
return(gp)
}
heatMap <- function(data, clusterMethod = "DensVM", type = "mean",
selectSamples, cex_row_label = 1, cex_col_label = 1,
scaleMethod = "none") {
exprs <- data$expressionData
samples <- sub("_[0-9]*$", "", row.names(exprs))
exprs <- exprs[samples %in% selectSamples, ]
ifMultiFCS <- length(selectSamples) > 1
dataj <- data$clusterRes[[clusterMethod]][samples %in%
selectSamples]
exprs_cluster <- data.frame(exprs, cluster = dataj)
if (type == "mean") {
cluster_stat <- aggregate(. ~ cluster, data = exprs_cluster,
mean)
rownames(cluster_stat) <- paste("cluster_", cluster_stat$cluster,
sep = "")
cluster_stat <- cluster_stat[, -which(colnames(cluster_stat) ==
"cluster")]
}
else if (type == "median") {
cluster_stat <- aggregate(. ~ cluster, data = exprs_cluster,
median)
rownames(cluster_stat) <- paste("cluster_", cluster_stat$cluster,
sep = "")
cluster_stat <- cluster_stat[, -which(colnames(cluster_stat) ==
"cluster")]
}
else if (type == "percentage" && ifMultiFCS) {
sampleName <- sub("_[0-9]*$", "", row.names(exprs))
clusterCounts <- as.data.frame(table(sampleName,
dataj))
colnames(clusterCounts) <- c("sample", "cluster",
"cellCount")
sampleCellCount <- as.data.frame(table(sampleName))
colnames(sampleCellCount) <- c("sample", "totalCellCount")
clust_cellCount <- merge(clusterCounts, sampleCellCount,
by = "sample")
clust_cellCount$percentage <- round(clust_cellCount$cellCount/clust_cellCount$totalCellCount *
100, 2)
cluster_stat <- reshape::cast(clust_cellCount, sample ~
cluster, value = "percentage")
percColNames <- cluster_stat$sample
cluster_stat <- cluster_stat[, -which(colnames(cluster_stat) ==
"sample")]
percRowNames <- paste("cluster_", colnames(cluster_stat),
sep = "")
cluster_stat <- t(as.matrix(cluster_stat))
row.names(cluster_stat) <- percRowNames
colnames(cluster_stat) <- percColNames
}
else {
return(NULL)
}
cluster_stat <- as.matrix(cluster_stat)
heatmap.2(cluster_stat, col = bluered, trace = "none",
symbreaks = FALSE, scale = scaleMethod, margins = c(8,
8), cexRow = cex_row_label, cexCol = cex_col_label,
srtCol = 30, symkey = FALSE, keysize = 1, key.par = list(mgp = c(2,
1, 0), mar = c(4, 3, 4, 0)), main = paste(clusterMethod,
type, "heatmap", sep = " "))
}
progressionPlot <- function(data, orderCol = "isomap_1",
clusterCol = "cluster", trend_formula = "expression ~ sm.ns(Pseudotime, df=3)") {
progressionData <- data$progressionRes
if (!is.null(progressionData)) {
data <- do.call(cbind, progressionData)
markers <- colnames(progressionData[[1]])
colnames(data) <- c(markers, "cluster", colnames(progressionData[[3]]))
if (!is.data.frame(data))
data <- data.frame(data, check.names = FALSE)
if (!all(markers %in% colnames(data)))
stop("Unmatching markers found!")
if (!(length(orderCol) == 1 && orderCol %in% colnames(data)))
stop("Can not find orderCol in data")
if (!(length(clusterCol) == 1 && clusterCol %in%
colnames(data)))
stop("Can not find clusterCol in data")
orderValue <- data[[orderCol]]
data <- data[order(orderValue), c(markers, clusterCol)]
data$Pseudotime <- sort(orderValue)
mdata <- melt(data, id.vars = c("Pseudotime", clusterCol))
colnames(mdata) <- c("Pseudotime", clusterCol, "markers",
"expression")
mdata$markers <- factor(mdata$markers)
mdata[[clusterCol]] <- factor(mdata[[clusterCol]])
min_expr <- min(mdata$expression)
vgamPredict <- ddply(mdata, .(markers), function(x) {
fit_res <- tryCatch({
vg <- suppressWarnings(vgam(formula = as.formula(trend_formula),
family = VGAM::tobit(Lower = min_expr, lmu = "identitylink"),
data = x, maxit = 30, checkwz = FALSE))
res <- VGAM::predict(vg, type = "response")
res[res < min_expr] <- min_expr
res
}, error = function(e) {
print("Error!")
print(e)
res <- rep(NA, nrow(x))
res
})
expectation = fit_res
data.frame(Pseudotime = x$Pseudotime, expectation = expectation)
})
color_by <- clusterCol
plot_cols <- round(sqrt(length(markers)))
cell_size <- 1
x_lab <- orderCol
y_lab <- "Expression"
legend_title <- clusterCol
monocle_theme_opts <- function() {
theme(strip.background = element_rect(colour = "white",
fill = "white")) + theme(panel.border = element_blank(),
axis.line = element_line()) + theme(panel.grid.minor.x = element_blank(),
panel.grid.minor.y = element_blank()) + theme(panel.grid.major.x = element_blank(),
panel.grid.major.y = element_blank()) + theme(panel.background = element_rect(fill = "white")) +
theme(legend.position = "right") + theme(axis.title = element_text(size = 15))
}
q <- ggplot(aes(Pseudotime, expression), data = mdata)
q <- q + geom_point(aes_string(color = color_by),
size = I(cell_size))
q <- q + geom_line(aes(Pseudotime, expectation),
data = vgamPredict)
q <- q + facet_wrap(~markers, ncol = plot_cols, scales = "free_y")
q <- q + ylab(y_lab) + xlab(x_lab) + theme_bw()
q <- q + guides(colour = guide_legend(title = legend_title,
override.aes = list(size = cell_size * 3)))
q <- q + monocle_theme_opts()
return(q)
}
else {
return(NULL)
}
}
remove_outliers <- function(x, na.rm = TRUE, ...) {
qnt <- quantile(x, probs = c(0.25, 0.75), na.rm = na.rm,
...)
H <- 1.5 * IQR(x, na.rm = na.rm)
y <- x
y[x < (qnt[1] - H)] <- qnt[1] - H
y[x > (qnt[2] + H)] <- qnt[2] + H
y
}
})
8: eval(expr, envir, enclos)
7: eval(exprs, envir)
6: sourceUTF8(file.path.ci(appDir, "global.R"))
5: appParts$onStart()
4: shiny::runApp(system.file("shiny", package = "cytofkit"))
3: cytofkitShinyAPP()
2: launchShinyAPP_GUI(okMessage)
1: cytofkit_GUI()

I get the same error:
> cytofkitShinyAPP() Loading required package: shiny Attaching package: ‘gplots’ The following object is masked from ‘package:stats’: lowess Error in FUN(X[[i]], ...) : cannot open file '~/R/win-library/3.3/reshape/data/Rdata.rdb': No such file or directoryThe error seems to only be produced when running the command from within RStudio