Error while using minfi for EPIC array data
1
0
Entering edit mode
Biologist ▴ 120
@biologist-9801
Last seen 4.8 years ago

Hi Kasper,

I am working on EPIC array data. I came to know that minfi package works well for EPIC data. I am using R3.3.0 and minfi_1.18.2 versions. My sample_annotation file looks like following.

Sample_Name Sample_Well Sample_Plate Sample_Group Pool_ID Sentrix_ID Sentrix_Position
1     MCF10A_NT_60 2.00E+11 R01C01
2     MCF10A_BPA_60 2.00E+11 R02C01
3     MCF10A_BaP_60 2.01E+11 R01C01
4     MCF10A_BPA-BaP_60 2.01E+11 R02C01
           

sheet <- read.metharray.sheet("data/idat")
[read.metharray.sheet] Found the following CSV files:

[1] "data/idat/sample_annotation.csv"
> epicData <- read.metharray.exp(targets=sheet)
> epicData@annotation <- c(array="IlluminaHumanMethylationEPIC", annotation="ilm10b2.hg19")
> sheet
   Sample_Name Sample_Well Sample_Plate        Sample_Group Pool_ID  Array
1            1          NA           NA        MCF10A_NT_60      NA         R01C01
2            2          NA           NA       MCF10A_BPA_60      NA R02C01
3            3          NA           NA       MCF10A_BaP_60      NA R01C01

When I got the MDS plot I couldnt identify the outliers because Sample_Name is given with numbers 1-27. So, I changed Sample_Name column in sample_annotation.csv like the following

Sample_Name Sample_Well Sample_Plate Sample_Group Pool_ID Sentrix_ID Sentrix_Position
A_NT_1     MCF10A_NT_60 2.00E+11 R01C01
A_BPA_1     MCF10A_BPA_60 2.00E+11 R02C01
A_BaP_1     MCF10A_BaP_60 2.01E+11 R01C01
         
           

And when I run again I am getting an error.

sheet <- read.metharray.sheet("data/idat")
[read.metharray.sheet] Found the following CSV files:

[1] "data/idat/sample_annotation.csv"
> epicData <- read.metharray.exp(targets=sheet)
Error in read.metharray(files, extended = extended, verbose = verbose) :
  The following specified files do not exist:character(0)_Grn.idat, character(0)_Grn.idat, character(0)_Grn.idat, character(0)_Grn.idat, character(0)_Grn.idat, character(0)_Grn.idat, character(0)_Grn.idat, character(0)_Grn.idat, character(0)_Grn.idat, character(0)_Grn.idat, character(0)_Grn.idat, character(0)_Grn.idat, character(0)_Grn.idat, character(0)_Grn.idat, character(0)_Grn.idat, character(0)_Grn.idat, character(0)_Grn.idat, character(0)_Grn.idat, character(0)_Grn.idat, character(0)_Grn.idat, character(0)_Grn.idat, character(0)_Grn.idat, character(0)_Grn.idat

Could you please help me in this? Thank you

minfi • 1.5k views
ADD COMMENT
0
Entering edit mode
@kasper-daniel-hansen-2979
Last seen 18 months ago
United States
On Fri, Jul 1, 2016 at 7:25 AM, ghk [bioc] <noreply@bioconductor.org> wrote: > epicData@annotation <- c(array="IlluminaHumanMethylationEPIC", > annotation="ilm10b2.hg19") > This line should not be necessary. I suspect a spreadsheet error. Could you send me the two csv files off line.
ADD COMMENT
0
Entering edit mode

Dear Kasper,

I had sent an email to you with two csv files. please check it and let me know. Thank you

ADD REPLY
0
Entering edit mode

Dear Kasper,

I found a solution to this problem from a recent paper "A cross-package Bioconductor workflow for analysing
methylation array data". But I would like to know which normalization function is better for cancer/normal samples. And to find DMR which package should be used? buphunter or DMRcate? Thank you in Advance.

ADD REPLY

Login before adding your answer.

Traffic: 851 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6