I have a RNASeq raw count data. I want to generate different versions of the count data with varying level of random noise for a method evaluation. For example, the data with highest level of noise will have fewest differentially expressed genes and vice-versa.
I estimated the parameters of the original count data using 'get_params' function in 'polyester' package.
The 'create_read_numbers' function then uses the estimated parameters and generates count data with similar distribution, however, without biological signal (no differentially expressed genes).
Is it possible to retain the biological signal of the original data in the artificial data? And, then add varying level of noise into the generated data?
I will appreciate for your help!
Best wishes,
Krishna