First of all, your current approach is wrong (even though it is commonly done your way).
This is because DESeq2 (and, similarly, most other methods) performs hypothesis tests: it gives you a list of all genes for which there is sufficient evidence to reject the null hypothesis of them not being differentially expressed. So, if a gene is on the list, it is most likely affected by the treatment, but if it is not on the list, this does not at all mean that it is not affected by the treatment. ("Absence of evidence is not evidence of absence of an effect.")
You want genes for which you have evidence that (a) they differ between mutant infection and wt infection and (b) that they do not differ (or do not differ much) between control and wt infection. So, for (b) you have to reverse the "burden of proof". In DESeq2, this is done with the "altHypothesis" option to the "results" function.
You could run results two times, first to obtain a list of genes that differ between mut and wt, then a run to find genes for which the there is evidence that the effect of wt infection compared to control is less than some reasonable threshold ("lfcThreshold" argument of "results"). (Note that this is not the same as filtering the results list by LFC; see our paper on DESeq2.)
Now, to find the intersection between the two lists, you can, of course, use Python. However, it may be worth your time to learn enough of R to do such trivial manipulations without having to resort to another language. (Hint: Use "intersect" on the gene IDs.)
The other question is: is this really what you want? Let's say a gene gets somewhat upregulated by infection by wt strains but strongly downregulated by infection with mutant strains, this might be a very interesting finding -- but your approach would miss it.
My recommendation would be to plot the (shrunken) log fold changes for the effect of infection (wt versus control) and for the effect of the mutation (mut versus wt) in a scatter plot and decide from this plot how to proceed.
Edit: You wrote originally that you are looking for genes that differ between mut and wt but neither between wt and control nor between mut and control. Note that this is a logical impossibility! (If wt=ctrl and mut=ctrl, then mut=wt.) So, if you found anything that way, then this were mainly the cases where you have absence of evidence but no evidence of absence of an effect of infection.
Thanks for getting back to me Simon,
No there isn't - that was a typo sorry (copy paste form wrong place)