HTqPCR limma decide test issue?
0
0
Entering edit mode
polemiraza ▴ 70
@polemiraza-11428
Last seen 3.0 years ago
Poland

Dear All,

I noticed some confusing meanTarget/meanCalibrator relation to Limma decide test (-1/0/1) in HTqPCR package.

1. I executed "example preprocessed data" from "qPCR analysis in R" vignette - code below.

I extracted whole DE table and "summary" table. I've created the table that refers only to "LongStarve -
Control" comparison [only significant genes]. Please see chunk of resulting table. The values were rounded for clarity.

feature.pos t.test p.value adj.p.value ddCt FC meanTarget meanCalibrator LongStarve - Control
M13;N13 -4.39 0.00 0.02 -2.18 4.54 27.44 29.62 -1
O9;P9 -6.61 0.00 0.00 -3.93 15.20 23.89 27.82 -1
A8;B8 -5.28 0.00 0.01 -5.80 55.58 26.36 32.16 -1
G21;H21 -7.03 0.00 0.00 -5.30 39.47 28.44 33.74 -1
A12;B12 6.62 0.00 0.00 3.63 0.08 24.45 20.82 1
I23;J23 6.36 0.00 0.00 4.33 0.05 31.13 26.80 1
K6;L6 5.16 0.00 0.01 2.67 0.16 31.08 28.42 1
K23;L23 4.86 0.00 0.01 5.62 0.02 31.49 25.87 1
O17;P17 4.97 0.00 0.01 2.69 0.15 34.05 31.36 1
C9;D9 5.37 0.00 0.01 3.47 0.09 29.13 25.67 1
C22;D22 5.84 0.00 0.01 2.09 0.24 30.48 28.40 1
G6;H6 6.57 0.00 0.00 4.98 0.03 33.99 29.01 1

 


If the gene in  "meanTarget" has lower mean Ct value than in "meanCalibrator" why its marked -1 (down-regulation)?.
Shouldn't be marked as 1 [the lower Ct the higher  expression]?

Thank you for your help.

Best,

Pawel

library(HTqPCR)

# Load example preprocessed data
data(qPCRpros)
samples <- read.delim(file.path(system.file("exData",package="HTqPCR"), "files.txt"))
# Define design and contrasts
design <- model.matrix(~0+samples$Treatment)
colnames(design) <- c("Control", "LongStarve","Starve")
contrasts <- makeContrasts(LongStarve-Control, LongStarve-Starve,
Starve-Control, levels=design)
# The actual test
diff.exp <- limmaCtData(qPCRpros, design=design, contrasts=contrasts)
# Some of the results
diff.exp[["LongStarve - Control"]][1:10,]
# Example with duplicate genes on card.
# Reorder data to get the genes in consecutive rows
temp <- qPCRpros[order(featureNames(qPCRpros)),]
diff.exp <- limmaCtData(temp, design=design, contrasts=contrasts,ndups=2, spacing=1)
# Some of the results
names(diff.exp)
diff.exp[["LongStarve - Control"]]
diff.exp[["Summary"]]
limma decide test HTqPCR • 1.0k views
ADD COMMENT

Login before adding your answer.

Traffic: 651 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6