You should be able to get example datasets following the DESeq2 tutorial ->
http://bioconductor.org/packages/devel/bioc/vignettes/DESeq2/inst/doc/DESeq2.html
Count matrix input
Alternatively, the function DESeqDataSetFromMatrix can be used if you already have a matrix of read counts prepared from another source. Another method for quickly producing count matrices from alignment files is the featureCounts function (Liao, Smyth, and Shi 2013) in the Rsubread package. To use DESeqDataSetFromMatrix, the user should provide the counts matrix, the information about the samples (the columns of the count matrix) as a DataFrame or data.frame, and the design formula.
To demonstate the use of DESeqDataSetFromMatrix, we will read in count data from the pasilla package. We read in a count matrix, which we will name cts, and the sample information table, which we will name coldata. Further below we describe how to extract these objects from, e.g. featureCounts output.
library("pasilla")
pasCts <- system.file("extdata",
"pasilla_gene_counts.tsv",
package="pasilla", mustWork=TRUE)
pasAnno <- system.file("extdata",
"pasilla_sample_annotation.csv",
package="pasilla", mustWork=TRUE)
cts <- as.matrix(read.csv(pasCts,sep="\t",row.names="gene_id"))
coldata <- read.csv(pasAnno, row.names=1)
coldata <- coldata[,c("condition","type")]
coldata$condition <- factor(coldata$condition)
coldata$type <- factor(coldata$type)