Hello,
I am new to DeSeq2 and I am trying to use a multi-factor design to answer this question:
Is captured/input in condition 1 different from captured/input in condition 2 ?
I used a combination of the DeSeq2 manual and DESeq2 testing ratio of ratios (RIP-Seq, CLIP-Seq, ribosomal profiling) to write the following script:
>print(MF_coldata)
MF_condition MF_assay
1_captured_rep1 1 captured
1_captured_rep2 1 captured
1_captured_rep3 1 captured
1_input_rep1 1 input
1_input_rep2 1 input
1_input_rep3 1 input
2_captured_rep1 2 captured
2_captured_rep2 2 captured
2_captured_rep3 2 captured
2_input_rep1 2 input
2_input_rep2 2 input
2_input_rep3 2 input
3_captured_rep1 3 captured
3_captured_rep2 3 captured
3_captured_rep3 3 captured
3_input_rep1 3 input
3_input_rep2 3 input
3_input_rep3 3 input
4_captured_rep1 4 captured
4_captured_rep2 4 captured
4_captured_rep3 4 captured
4_input_rep1 4 input
4_input_rep2 4 input
4_input_rep3 4 input
5_captured_rep1 5 captured
5_captured_rep2 5 captured
5_captured_rep3 5 captured
5_input_rep1 5 input
5_input_rep2 5 input
5_input_rep3 5 input
>ddsMF <- DESeqDataSetFromMatrix(countData=countdata, colData=MF_coldata, design=~ MF_assay + MF_condition + MF_assay:MF_condition)
>ddsMF <- ddsMF[ rowSums(counts(ddsMF)) > 1, ]
>ddsMF <- DESeq(ddsMF, test="LRT", reduced= ~ MF_assay + MF_condition)
>print(results(ddsMF)) # OUTPUT1
>resMF = results(ddsMF, contrast=c("MF_condition", '1','2'))
>print(resMF) # OUTPUT2
My problem is when comparing OUTPUT1 and OUTPUT2, I obtain different values of log2FoldChange but p-values are the same. Here are the headers for the two OUTPUTs:
OUTPUT1:
log2 fold change (MLE): MF assayinput.MF condition2
LRT p-value: '~ MF_assay + MF_condition + MF_assay:MF_condition' vs '~ MF_assay + MF_condition'
OUTPUT2:
log2 fold change (MLE): MF_condition 1 vs 2
LRT p-value: '~ MF_assay + MF_condition + MF_assay:MF_condition' vs '~ MF_assay + MF_condition'
Am I doing something wrong with the contrast feature?
Thanks in advance!
> sessionInfo( )
R version 4.1.0 (2021-05-18)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: CentOS Linux 7 (Core)
Matrix products: default
BLAS/LAPACK: /usr/local/intel/compilers_and_libraries_2020.2.254/linux/mkl/lib/intel64_lin/libmkl_rt.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
loaded via a namespace (and not attached):
[1] compiler_4.1.0