DESeq2 with multiple variable give me different results
1
2
Entering edit mode
@rafaelsolersanblas-22935
Last seen 10 months ago
Alicante

3 43 minutes ago Rafael Soler ▴ 220

I am doing a DESeq2 comparison with different levels and one factor. To do this, I have performed the analysis in two different ways.

First, putting all the samples in the same DESeq object and then extracting each comparison:

> sampleinfo
    FileName    SampleName  Status
    A_1_count   A_1 A       
    A_2_count   A_2 A       
    B_3_count   B_3 B       
    B_4_count   B_4 B       
    C_5_count   C_5 C   
    C_6_count   C_6 C   
    D_7_count   D_7 D   
    D_8_count   D_8 D   
    E_9_count   E_9 E   
    E_10_count  E_10    E

dds <- DESeqDataSetFromMatrix(countData = cts,
                                colData = sampleinfo,
                              design = ~ Status)

dds$Status <- relevel(dds$Status, ref = "E")

And the results:

dds <- DESeq(dds)
res_A <- results(dds,name="Status_A_vs_E")
res_B <- results(dds,name="Status_B_vs_E")
res_C <- results(dds,name="Status_C_vs_E")
res_D <- results(dds,name="Status_D_vs_E")

And doing these comparisons one by one separately on different DESeq objects.

> sampleinfo_A
    FileName    SampleName  Status
    A_1_count   A_1 A       
    A_2_count   A_2 A       
    E_9_count   E_9 E   
    E_10_count  E_10    E

> sampleinfo_B
    FileName    SampleName  Status
    B_3_count   B_3 B       
    B_4_count   B_4 B       
    E_9_count   E_9 E   
    E_10_count  E_10    E

dds_A <- DESeqDataSetFromMatrix(countData = cts_A,
                                colData = sampleinfo_A,
                              design = ~ Status)

dds_B <- DESeqDataSetFromMatrix(countData = cts_B,
                                colData = sampleinfo_B,
                              design = ~ Status)

And the results:

dds_A <- DESeq(dds_A)
res_A <- results(dds_A)

dds_B <- DESeq(dds_B)
res_B <- results(dds_B)

(Repeat for each condition)

However, the results give me different between the 2 methods. Does anyone know why is this happening? How it is the correct way to compare all to E?

Thank you!

> sessionInfo( )
R version 4.0.3 (2020-10-10)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Linux Mint 20

Matrix products: default
BLAS:   /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.9.0
LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.9.0

locale:
 [1] LC_CTYPE=es_ES.UTF-8       LC_NUMERIC=C               LC_TIME=es_ES.UTF-8        LC_COLLATE=es_ES.UTF-8    
 [5] LC_MONETARY=es_ES.UTF-8    LC_MESSAGES=es_ES.UTF-8    LC_PAPER=es_ES.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C             LC_MEASUREMENT=es_ES.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] parallel  stats4    stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] TeachingDemos_2.12          pheatmap_1.0.12             vsn_3.58.0                  IHW_1.18.0                 
 [5] apeglm_1.12.0               readr_2.0.1                 airway_1.10.0               mosaic_1.8.3               
 [9] ggridges_0.5.3              mosaicData_0.20.2           ggformula_0.10.1            ggstance_0.3.5             
[13] dplyr_1.0.7                 Matrix_1.3-4                lattice_0.20-44             RColorBrewer_1.1-2         
[17] gplots_3.1.1                ggplot2_3.3.5               DESeq2_1.30.1               SummarizedExperiment_1.20.0
[21] Biobase_2.50.0              MatrixGenerics_1.2.1        matrixStats_0.60.0          GenomicRanges_1.42.0       
[25] GenomeInfoDb_1.26.7         IRanges_2.24.1              S4Vectors_0.28.1            BiocGenerics_0.36.1        

loaded via a namespace (and not attached):
  [1] colorspace_2.0-2       ellipsis_0.3.2         leaflet_2.0.4.1        XVector_0.30.0         ggdendro_0.1.22       
  [6] rstudioapi_0.13        hexbin_1.28.2          farver_2.1.0           affyio_1.60.0          ggrepel_0.9.1         
 [11] bit64_4.0.5            AnnotationDbi_1.52.0   fansi_0.5.0            mvtnorm_1.1-2          splines_4.0.3         
 [16] cachem_1.0.5           geneplotter_1.68.0     knitr_1.33             polyclip_1.10-0        broom_0.7.9           
 [21] annotate_1.68.0        ggforce_0.3.3          BiocManager_1.30.16    compiler_4.0.3         httr_1.4.2            
 [26] backports_1.2.1        assertthat_0.2.1       fastmap_1.1.0          limma_3.46.0           cli_3.0.1             
 [31] tweenr_1.0.2           htmltools_0.5.1.1      tools_4.0.3            affy_1.68.0            coda_0.19-4           
 [36] gtable_0.3.0           glue_1.4.2             GenomeInfoDbData_1.2.4 tinytex_0.33           Rcpp_1.0.7            
 [41] slam_0.1-48            bbmle_1.0.24           vctrs_0.3.8            preprocessCore_1.52.1  crosstalk_1.1.1       
 [46] xfun_0.25              stringr_1.4.0          lifecycle_1.0.0        mosaicCore_0.9.0       gtools_3.9.2          
 [51] XML_3.99-0.6           zlibbioc_1.36.0        MASS_7.3-54            scales_1.1.1           hms_1.1.0             
 [56] yaml_2.2.1             memoise_2.0.0          gridExtra_2.3          emdbook_1.3.12         bdsmatrix_1.3-4       
 [61] labelled_2.8.0         stringi_1.7.3          RSQLite_2.2.7          genefilter_1.72.1      caTools_1.18.2        
 [66] BiocParallel_1.24.1    rlang_0.4.11           pkgconfig_2.0.3        bitops_1.0-7           lpsymphony_1.18.0     
 [71] evaluate_0.14          purrr_0.3.4            labeling_0.4.2         htmlwidgets_1.5.3      bit_4.0.4             
 [76] tidyselect_1.1.1       plyr_1.8.6             magrittr_2.0.1         R6_2.5.0               generics_0.1.0        
 [81] DelayedArray_0.16.3    DBI_1.1.1              pillar_1.6.2           haven_2.4.3            withr_2.4.2           
 [86] survival_3.2-11        RCurl_1.98-1.3         tibble_3.1.3           crayon_1.4.1           fdrtool_1.2.16        
 [91] KernSmooth_2.23-20     utf8_1.2.2             tzdb_0.1.2             rmarkdown_2.10         locfit_1.5-9.4        
 [96] grid_4.0.3             blob_1.2.2             forcats_0.5.1          digest_0.6.27          xtable_1.8-4          
[101] tidyr_1.1.3            numDeriv_2016.8-1.1    munsell_0.5.0
Factor Levels Dispersionestimates DESeq2 • 289 views
ADD COMMENT
2
Entering edit mode
@mikelove
Last seen 2 days ago
United States

It's a FAQ in the vignette.

ADD COMMENT
0
Entering edit mode

Thank you Michael! Regarding my comparison, I have a high variability within the groups, would you recommend comparing group by group separately and not in the same DESeq object? ![enter image description here][1]

ADD REPLY
1
Entering edit mode

This choice is up to you. I see that MN is a lot more closely spread than HGG for example, so I would lean toward pairwise.

ADD REPLY
0
Entering edit mode

Thank you! :)

ADD REPLY

Login before adding your answer.

Traffic: 356 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6