Hello all,
I have a large RNA-seq dataset that I am trying to run WGCNA on. The data set has many variables including (including 3 brain regions, 3 ages, sex, 2 genotypes.) I have been advised to use Deseq2 normalization for these samples prior to doing WGCNA.
I am struggling with two aspects.
1) I assume I am not actually doing Deseq2()
differential expression on this data, rather just using the normalization method of varianceStabilizingTransformation
on the raw counts
2) I am struggling with the "design
" aspect of these functions as I think that all three aspects (region, age, sex and genotype) should all play a role in the design. Does the design even matter if I am not using this for differential expression? Is even used for normalization or just for the differential expression?
countData= read.csv("Raw.Counts.csv, sep = ",", rownames=Genes)
colData=read.csv("Sample.info.numerical.csv", sep = ",", rownames=Sample_ID)
dds<- DESeqDataSetFromMatrix(countData, colData, design=???)
dds <- estimateSizeFactors(dds)
vsd <- varianceStabilizingTransformation(dds, blind=T)
normalized_counts <- counts(dds, normalized=TRUE)
Cross-posted: https://www.biostars.org/p/9502614/#9502614