resultsNames(dds) not showing all contrasts
1
0
Entering edit mode
@dd6eb667
Last seen 6 months ago
Argentina

Hello. I am trying to run lfcShrink() on one of the contrasts created with the results() function but that contrast does not apprear in the resultsNames(dds), so the lfcShrink() gives me an error. Thanks for any help in advance!

dds <- DESeqDataSetFromMatrix( 
  countData = countdata, 
  colData = coldata, 
  design = ~ replicado + condition) 
dds
saveRDS(dds, "dds")

keep <- rowSums(counts(dds)) >= 10 
dds <- dds[keep,]

dds$condition <- factor(dds$condition, levels = c("UNT","E2","GW","E2GW"))
dds$condition

dds <- DESeq(dds)

SaveUPandDown = function(a,b){
  comp <- results(dds, contrast = c("condition", a, b), alpha=0.05)
  #write.csv(comp, paste0(a,"vs",b,".csv"))
  print(summary(comp))
  comp_sinNAs = comp[complete.cases(comp[,"padj"]),]

  comp_up = comp_sinNAs[comp_sinNAs$log2FoldChange>0 & comp_sinNAs$padj<0.05,]
  comp_up$ENSID = rownames(comp_up)
  comp_up = left_join(data.frame(comp_up), IDs_table, by="ENSID")
  comp_up = comp_up[, c("ENSID","SYMBOL","baseMean","log2FoldChange","lfcSE","stat","pvalue","padj")]
  comp_up = arrange(comp_up, desc(log2FoldChange))
  #write.csv(comp_up, paste0(a,"vs",b,"_up.csv"))

  comp_down = comp_sinNAs[comp_sinNAs$log2FoldChange<0 & comp_sinNAs$padj<0.05,]
  comp_down$ENSID = rownames(comp_down)
  comp_down = left_join(data.frame(comp_down), IDs_table, by="ENSID")
  comp_down = comp_down[, c("ENSID","SYMBOL","baseMean","log2FoldChange","lfcSE","stat","pvalue","padj")]
  comp_down = arrange(comp_down, log2FoldChange)
  #write.csv(comp_down, paste0(a,"vs",b,"_down.csv"))

  return(list("ALL"=comp , "UP"= comp_up, "DOWN"=comp_down))

}

E2vsUNT = SaveUPandDown("E2", "UNT")
GWvsUNT = SaveUPandDown("GW", "UNT")
E2GWvsUNT = SaveUPandDown("E2GW", "UNT")
E2GWvsE2 = SaveUPandDown("E2GW", "E2")
E2GWvsGW = SaveUPandDown("E2GW", "GW")

resultsNames(dds)
# [1] "Intercept"             "replicado_2_vs_1"      "condition_E2_vs_UNT"   "condition_GW_vs_UNT"   "condition_E2GW_vs_UNT"

E2GWvsE2_LFC <- lfcShrink(dds, coef="condition_E2GW_vs_E2", type="apeglm")
#Error in lfcShrink(dds, coef = "condition_E2GW_vs_E2", type = "apeglm") : 
# coef %in% resultsNamesDDS is not TRUE


with(E2GWvsE2$ALL, plot(log2FoldChange, -log10(padj), pch=20, main="Volcano plot", xlim=c(-3,3)))
with(subset(E2GWvsE2$ALL, padj<.05 ), points(log2FoldChange, -log10(padj), pch=20, col="blue"))

Also, the shape of volcano plot of of E2GWvsE2 is a bit strange, with some genes with really large values of logFC. That is why I wanted to try the plot with the shrunken values, to see if the plot improves.

volcano plot of E2GWvsE2


sessionInfo( )
R version 4.2.1 (2022-06-23)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 22.04.1 LTS

Matrix products: default
BLAS:   /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.10.0
LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.10.0

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C               LC_TIME=es_AR.UTF-8        LC_COLLATE=en_US.UTF-8     LC_MONETARY=es_AR.UTF-8   
 [6] LC_MESSAGES=en_US.UTF-8    LC_PAPER=es_AR.UTF-8       LC_NAME=C                  LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=es_AR.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats4    stats     graphics  grDevices datasets  utils     methods   base     

other attached packages:
 [1] venn_1.11                   forcats_0.5.2               stringr_1.4.1               dplyr_1.0.9                 purrr_0.3.4                
 [6] readr_2.1.2                 tidyr_1.2.0                 tibble_3.1.8                ggplot2_3.3.6               tidyverse_1.3.2            
[11] DESeq2_1.36.0               SummarizedExperiment_1.26.1 Biobase_2.56.0              MatrixGenerics_1.8.1        matrixStats_0.62.0         
[16] GenomicRanges_1.48.0        GenomeInfoDb_1.32.3         IRanges_2.30.1              S4Vectors_0.34.0            BiocGenerics_0.42.0        

loaded via a namespace (and not attached):
 [1] bitops_1.0-7           fs_1.5.2               lubridate_1.8.0        bit64_4.0.5            RColorBrewer_1.1-3     httr_1.4.4            
 [7] numDeriv_2016.8-1.1    tools_4.2.1            backports_1.4.1        utf8_1.2.2             R6_2.5.1               DBI_1.1.3             
[13] colorspace_2.0-3       apeglm_1.18.0          withr_2.5.0            tidyselect_1.1.2       bit_4.0.4              compiler_4.2.1        
[19] cli_3.3.0              rvest_1.0.3            xml2_1.3.3             DelayedArray_0.22.0    labeling_0.4.2         scales_1.2.1          
[25] mvtnorm_1.1-3          genefilter_1.78.0      digest_0.6.29          XVector_0.36.0         pkgconfig_2.0.3        bbmle_1.0.25          
[31] dbplyr_2.2.1           fastmap_1.1.0          rlang_1.0.4            readxl_1.4.1           rstudioapi_0.14        RSQLite_2.2.16        
[37] farver_2.1.1           generics_0.1.3         jsonlite_1.8.0         BiocParallel_1.30.3    googlesheets4_1.0.1    RCurl_1.98-1.8        
[43] magrittr_2.0.3         GenomeInfoDbData_1.2.8 Matrix_1.4-1           Rcpp_1.0.9             munsell_0.5.0          fansi_1.0.3           
[49] lifecycle_1.0.1        stringi_1.7.8          MASS_7.3-58            zlibbioc_1.42.0        plyr_1.8.7             grid_4.2.1            
[55] blob_1.2.3             parallel_4.2.1         bdsmatrix_1.3-6        crayon_1.5.1           lattice_0.20-45        Biostrings_2.64.1     
[61] haven_2.5.1            splines_4.2.1          annotate_1.74.0        hms_1.1.2              KEGGREST_1.36.3        locfit_1.5-9.6        
[67] pillar_1.8.1           geneplotter_1.74.0     codetools_0.2-18       admisc_0.29            reprex_2.0.2           XML_3.99-0.10         
[73] glue_1.6.2             renv_0.15.5            modelr_0.1.9           png_0.1-7              vctrs_0.4.1            tzdb_0.3.0            
[79] cellranger_1.1.0       gtable_0.3.0           assertthat_0.2.1       emdbook_1.3.12         cachem_1.0.6           xtable_1.8-4          
[85] broom_1.0.0            coda_0.19-4            survival_3.4-0         googledrive_2.0.0      gargle_1.2.0           AnnotationDbi_1.58.0  
[91] memoise_2.0.1          ellipsis_0.3.2
DESeq2 resultsNames lfcShrink • 1.3k views
ADD COMMENT
0
Entering edit mode
swbarnes2 ★ 1.4k
@swbarnes2-14086
Last seen 16 hours ago
San Diego

Don't worry about resultsNames not showing the exact contrast you want. It's just showing the ones against the reference level, but you can still use contrast to compare what you want.

ADD COMMENT
0
Entering edit mode

Oh, ok. I did not know that the resultsNames is just showing the ones against the reference level. But then, why do I get this error message later?

E2GWvsE2_LFC <- lfcShrink(dds, coef="condition_E2GW_vs_E2", type="apeglm")
#Error in lfcShrink(dds, coef = "condition_E2GW_vs_E2", type = "apeglm") : 
# coef %in% resultsNamesDDS is not TRUE
ADD REPLY
1
Entering edit mode

apeglm does not use contrasts, hence the coefficients must be available in the resultsNames. If that is not the case you have to relevel and rerun the Wald test. This has all been asked before, please read the manual and google your error/question before posting. DESeq2 is so heavily used, 99.o% of things have been asked before: https://www.biostars.org/p/448959/

ADD REPLY

Login before adding your answer.

Traffic: 955 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6