DESeq2 paired multifactor test
1
0
Entering edit mode
ijvechetti ▴ 10
@ijvechetti-20701
Last seen 2.1 years ago
United States

Hi, I have an experimental design where I have groups (sham and SA) and treatments (control and treated) with paired samples. It looks like this:

Samples Group Treatment Mice Mice.nested
A1 Sham Control A A
----------- --------- ------------- ------- ----------------
A2 Sham Control B B
----------- --------- ------------- ------- ----------------
A3 Sham Control C C
----------- --------- ------------- ------- ----------------
A4 Sham Control D D
----------- --------- ------------- ------- ----------------
A5 Sham Control E E
----------- --------- ------------- ------- ----------------
B1 Sham Treated A A
----------- --------- ------------- ------- ----------------
B2 Sham Treated B B
----------- --------- ------------- ------- ----------------
B3 Sham Treated C C
----------- --------- ------------- ------- ----------------
B4 Sham Treated D D
----------- --------- ------------- ------- ----------------
B5 Sham Treated E E
----------- --------- ------------- ------- ----------------
C1 SA Control F A
----------- --------- ------------- ------- ----------------
C2 SA Control G B
----------- --------- ------------- ------- ----------------
C3 SA Control H C
----------- --------- ------------- ------- ----------------
C4 SA Control I D
----------- --------- ------------- ------- ----------------
C5 SA Control J E
----------- --------- ------------- ------- ----------------
D1 SA Treated F A
----------- --------- ------------- ------- ----------------
D2 SA Treated G B
----------- --------- ------------- ------- ----------------
D3 SA Treated H C
----------- --------- ------------- ------- ----------------
D4 SA Treated I D
----------- --------- ------------- ------- ----------------
D5 SA Treated J E
----------- --------- ------------- ------- ----------------

I would like to know what are the differentially expressed genes within groups and between treatments, and I think the following would give me that:

design= ~ Group + Group:Mice.nested + Group:Treatment

Extract Sham-control vs Sham-treated

results(dds, name = "GroupSham.TreatmentTreated", test="Wald", alpha=0.05)

Extract SA-control vs SA-treated

results(dds, name = "GroupSa.TreatmentTreated", test="Wald", alpha=0.05)

Assuming everything I did at this point is correct (which could not be), how would I extract the genes that are changing between groups within treatments (Sham-vs-SA_control and Sham-vs-SA_treated) Thanks in advance

```> sessionInfo() R version 4.2.1 (2022-06-23 ucrt) Platform: x86_64-w64-mingw32/x64 (64-bit) Running under: Windows 10 x64 (build 22621)

Matrix products: default

locale: [1] LC_COLLATE=English_United States.utf8 LC_CTYPE=English_United States.utf8 LC_MONETARY=English_United States.utf8 LC_NUMERIC=C
[5] LC_TIME=English_United States.utf8

attached base packages: [1] stats4 stats graphics grDevices utils datasets methods base

other attached packages: [1] DESeq2_1.36.0 SummarizedExperiment_1.26.1 Biobase_2.56.0 MatrixGenerics_1.8.1 matrixStats_0.62.0
[6] GenomicRanges_1.48.0 GenomeInfoDb_1.32.4 IRanges_2.30.1 S4Vectors_0.34.0 BiocGenerics_0.42.0

loaded via a namespace (and not attached): [1] Rcpp_1.0.9 locfit_1.5-9.6 lattice_0.20-45 png_0.1-7 Biostrings_2.64.1 assertthat_0.2.1
[7] utf8_1.2.2 R6_2.5.1 RSQLite_2.2.18 httr_1.4.4 ggplot2_3.3.6 pillar_1.8.1
[13] zlibbioc_1.42.0 rlang_1.0.6 rstudioapi_0.14 annotate_1.74.0 blob_1.2.3 Matrix_1.4-1
[19] splines_4.2.1 BiocParallel_1.30.4 geneplotter_1.74.0 RCurl_1.98-1.9 bit_4.0.4 munsell_0.5.0
[25] DelayedArray_0.22.0 compiler_4.2.1 pkgconfig_2.0.3 tidyselect_1.2.0 KEGGREST_1.36.3 tibble_3.1.8
[31] GenomeInfoDbData_1.2.8 codetools_0.2-18 XML_3.99-0.11 fansi_1.0.3 crayon_1.5.2 dplyr_1.0.10
[37] bitops_1.0-7 grid_4.2.1 xtable_1.8-4 gtable_0.3.1 lifecycle_1.0.3 DBI_1.1.3
[43] magrittr_2.0.3 scales_1.2.1 cli_3.4.1 cachem_1.0.6 XVector_0.36.0 genefilter_1.78.0
[49] generics_0.1.3 vctrs_0.4.2 cowplot_1.1.1 RColorBrewer_1.1-3 tools_4.2.1 bit64_4.0.5
[55] glue_1.6.2 parallel_4.2.1 fastmap_1.1.0 survival_3.3-1 AnnotationDbi_1.58.0 colorspace_2.0-3
[61] memoise_2.0.1 ```

DESeq2 StatisticalMethod • 677 views
ADD COMMENT
0
Entering edit mode
@mikelove
Last seen 5 days ago
United States

Sorry for the delay in reply, but I don't have sufficient time to answer statistical design questions, I have to restrict myself to software related issues on the support site. I recommend to find a local statistician or someone familiar with linear models in R to work on the statistical design.

ADD COMMENT

Login before adding your answer.

Traffic: 496 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6