Hello,
I am trying to analyse kallisto outputs with BioNERO package and have problems with module_trait_cor function. I create SummarizedExperiment with tximeta:
coldata <- data.frame(files, names=rownames(Np_samples), condition=Np_samples$Location, stringsAsFactors=FALSE)
se <- tximeta(coldata, typ="kallisto")
Following the vignette everything runs ok, until I proceed with module_trait_cor function, where I get:
MEtrait <- module_trait_cor(exp = final_exp, MEs = net$MEs)
# Error in cor(as.matrix(MEs), trait, use = "p", method = cor_method) :
# 'y' must be numeric
Any help would be appreciated. Please post if I need to post additional samples or code.
session_info() output:
R version 4.2.2 (2022-10-31) Platform: aarch64-apple-darwin20 (64-bit) Running under: macOS Ventura 13.5.1
Matrix products: default LAPACK: /Library/Frameworks/R.framework/Versions/4.2-arm64/Resources/lib/libRlapack.dylib
locale: [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages: [1] stats4 stats graphics grDevices utils datasets methods base
other attached packages:
[1] BioNERO_1.6.1 tximeta_1.16.1 palmerpenguins_0.1.1 DESeq2_1.38.3
[5] SummarizedExperiment_1.28.0 Biobase_2.58.0 MatrixGenerics_1.10.0 matrixStats_1.0.0
[9] GenomicRanges_1.50.2 GenomeInfoDb_1.34.9 IRanges_2.32.0 S4Vectors_0.36.2
[13] BiocGenerics_0.44.0 trinotateR_1.0 data.table_1.14.8 ggplot2_3.4.3
[17] tibble_3.2.1 janitor_2.2.0 tidyr_1.3.0 dplyr_1.1.2
[21] tximport_1.26.1
loaded via a namespace (and not attached):
[1] rappdirs_0.3.3 rtracklayer_1.58.0 minet_3.56.0 coda_0.19-4
[5] bit64_4.0.5 knitr_1.43 DelayedArray_0.24.0 rpart_4.1.19
[9] KEGGREST_1.38.0 RCurl_1.98-1.12 AnnotationFilter_1.22.0 doParallel_1.0.17
[13] generics_0.1.3 preprocessCore_1.60.2 GenomicFeatures_1.50.4 RhpcBLASctl_0.23-42
[17] cowplot_1.1.1 microbiome_1.20.0 RSQLite_2.3.1 shadowtext_0.1.2
[21] bit_4.0.5 enrichplot_1.18.4 xml2_1.3.5 lubridate_1.9.2
[25] httpuv_1.6.11 viridis_0.6.4 xfun_0.40 hms_1.1.3
[29] evaluate_0.21 promises_1.2.1 fansi_1.0.4 restfulr_0.0.15
[33] progress_1.2.2 dbplyr_2.3.3 htmlwidgets_1.6.2 igraph_1.5.1
[37] DBI_1.1.3 geneplotter_1.76.0 purrr_1.0.2 ellipsis_0.3.2
[41] ggnewscale_0.4.9 ggpubr_0.6.0 backports_1.4.1 permute_0.9-7
[45] annotate_1.76.0 biomaRt_2.54.1 vctrs_0.6.3 Cairo_1.6-1
[49] ensembldb_2.22.0 abind_1.4-5 cachem_1.0.8 withr_2.5.0
[53] ggforce_0.4.1 HDO.db_0.99.1 checkmate_2.2.0 vegan_2.6-4
[57] GenomicAlignments_1.34.1 treeio_1.22.0 prettyunits_1.1.1 cluster_2.1.4
[61] DOSE_3.24.2 ape_5.7-1 lazyeval_0.2.2 crayon_1.5.2
[65] genefilter_1.80.3 labeling_0.4.2 edgeR_3.40.2 pkgconfig_2.0.3
[69] tweenr_2.0.2 nlme_3.1-163 ProtGenerics_1.30.0 nnet_7.3-19
[73] rlang_1.1.1 lifecycle_1.0.3 downloader_0.4 filelock_1.0.2
[77] BiocFileCache_2.6.1 phyloseq_1.42.0 AnnotationHub_3.6.0 polyclip_1.10-4
[81] Matrix_1.6-1 aplot_0.2.0 NetRep_1.2.7 carData_3.0-5
[85] Rhdf5lib_1.20.0 base64enc_0.1-3 GlobalOptions_0.1.2 png_0.1-8
[89] viridisLite_0.4.2 rjson_0.2.21 bitops_1.0-7 gson_0.1.0
[93] ggnetwork_0.5.12 rhdf5filters_1.10.1 Biostrings_2.66.0 blob_1.2.4
[97] shape_1.4.6 stringr_1.5.0 qvalue_2.30.0 rstatix_0.7.2
[101] gridGraphics_0.5-1 ggsignif_0.6.4 scales_1.2.1 memoise_2.0.1
[105] magrittr_2.0.3 plyr_1.8.8 zlibbioc_1.44.0 compiler_4.2.2
[109] scatterpie_0.2.1 BiocIO_1.8.0 RColorBrewer_1.1-3 intergraph_2.0-3
[113] clue_0.3-64 Rsamtools_2.14.0 snakecase_0.11.0 cli_3.6.1
[117] ade4_1.7-22 XVector_0.38.0 patchwork_1.1.3 htmlTable_2.4.1
[121] Formula_1.2-5 WGCNA_1.72-1 MASS_7.3-60 mgcv_1.9-0
[125] tidyselect_1.2.0 stringi_1.7.12 yaml_2.3.7 GOSemSim_2.24.0
[129] locfit_1.5-9.8 ggrepel_0.9.3 grid_4.2.2 fastmatch_1.1-4
[133] tools_4.2.2 timechange_0.2.0 parallel_4.2.2 circlize_0.4.15
[137] rstudioapi_0.15.0 foreign_0.8-84 foreach_1.5.2 gridExtra_2.3
[141] farver_2.1.1 Rtsne_0.16 ggraph_2.1.0 digest_0.6.33
[145] BiocManager_1.30.22 shiny_1.7.5 networkD3_0.4 Rcpp_1.0.11
[149] car_3.1-2 broom_1.0.5 BiocVersion_3.16.0 later_1.3.1
[153] httr_1.4.7 AnnotationDbi_1.60.2 ComplexHeatmap_2.14.0 GENIE3_1.20.0
[157] colorspace_2.1-0 XML_3.99-0.14 splines_4.2.2 yulab.utils_0.0.8
[161] statmod_1.5.0 tidytree_0.4.5 graphlayouts_1.0.0 multtest_2.54.0
[165] ggplotify_0.1.2 xtable_1.8-4 jsonlite_1.8.7 ggtree_3.6.2
[169] dynamicTreeCut_1.63-1 tidygraph_1.2.3 ggfun_0.1.2 R6_2.5.1
[173] Hmisc_5.1-0 pillar_1.9.0 htmltools_0.5.6 mime_0.12
[177] glue_1.6.2 fastmap_1.1.1 clusterProfiler_4.6.2 BiocParallel_1.32.6
[181] interactiveDisplayBase_1.36.0 codetools_0.2-19 fgsea_1.24.0 utf8_1.2.3
[185] sva_3.46.0 lattice_0.21-8 network_1.18.1 curl_5.0.2
[189] magick_2.7.5 GO.db_3.16.0 limma_3.54.2 survival_3.5-7
[193] rmarkdown_2.24 statnet.common_4.9.0 biomformat_1.26.0 munsell_0.5.0
[197] GetoptLong_1.0.5 fastcluster_1.2.3 rhdf5_2.42.1 GenomeInfoDbData_1.2.9
[201] iterators_1.0.14 impute_1.72.3 reshape2_1.4.4 gtable_0.3.4
Hi,
It seems like you have a problem with your sample metadata. The strange thing is that BioNERO doesn't require metadata variables to be numeric; they can be factors, for instance.
I noticed that you're using an older version of BioNERO. I updated the function
module_trait_cor()
some months ago to include support for multiple variables at the same time. Could you install the latest version of BioNERO and see if the problem is solved?In case you're using an older version of Bioconductor, you can install BioNERO directly from GitHub with:
Best,
Fabricio
update to BioNERO_1.9.7 solved the problem. Thank you very much.
Best,
Matevz