Hello,
I'm running a Gene regulatory network inference. Host 13 is the file that contain the observations, Host13tfs is the file that contain 116 transcription factors. Two columns: one is the protein ID and the second column lists the family name that the transcription factor belongs to. I followed the steps in https://bioconductor.org/packages/release/bioc/vignettes/BioNERO/inst/doc/vignette_02_GRN_inference.html
When I get to the step to calculate the SFT fit and select the best fit for each network, this is the code I wrote based on the tutorial:
> grn <- exp2grn(exp = final_exp, regulators = Host13tfs$Protein.ID, nTrees = 10)
I get the following error:
Error in .checkArguments(exprMatrix = exprMatrix, regulators = regulators,  : 
  Provide at least 2 potential regulators.
Please let me know how can I fix this problem. Thanks, Adriana
```r
Host13tfs<-read.csv("Host13tfs.csv") Host13tfs Protein.ID Family 1 199670 SNF2 2 246194 NmrA 3 235769 CP2 4 111668 GATA
grn <- exp2grn(exp = final_exp, regulators = Host13tfs$Protein.ID, nTrees = 10) Error in .checkArguments(exprMatrix = exprMatrix, regulators = regulators, : Provide at least 2 potential regulators.
sessionInfo( )
R version 4.3.0 (2023-04-21) Platform: aarch64-apple-darwin20 (64-bit) Running under: macOS Ventura 13.4.1
Matrix products: default BLAS: /System/Library/Frameworks/Accelerate.framework/Versions/A/Frameworks/vecLib.framework/Versions/A/libBLAS.dylib LAPACK: /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/lib/libRlapack.dylib; LAPACK version 3.11.0
locale: [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
time zone: America/New_York tzcode source: internal
attached base packages: [1] stats graphics grDevices utils datasets methods base
other attached packages: [1] BioNERO_1.8.5
loaded via a namespace (and not attached):
  [1] RColorBrewer_1.1-3          ggdendro_0.1.23             rstudioapi_0.15.0
  [4] shape_1.4.6                 NetRep_1.2.6                magrittr_2.0.3
  [7] rmarkdown_2.23              GlobalOptions_0.1.2         zlibbioc_1.46.0
 [10] vctrs_0.6.3                 memoise_2.0.1               RCurl_1.98-1.12
 [13] base64enc_0.1-3             htmltools_0.5.5             S4Arrays_1.0.5
 [16] dynamicTreeCut_1.63-1       Formula_1.2-5               htmlwidgets_1.6.2
 [19] plyr_1.8.8                  impute_1.74.1               cachem_1.0.8
 [22] igraph_1.5.0.1              lifecycle_1.0.3             ggnetwork_0.5.12
 [25] iterators_1.0.14            pkgconfig_2.0.3             Matrix_1.6-0
 [28] R6_2.5.1                    fastmap_1.1.1               GenomeInfoDbData_1.2.10
 [31] MatrixGenerics_1.12.3       clue_0.3-64                 digest_0.6.33
 [34] colorspace_2.1-0            patchwork_1.1.2             AnnotationDbi_1.62.2
 [37] S4Vectors_0.38.1            GENIE3_1.22.0               Hmisc_5.1-0
 [40] GenomicRanges_1.52.0        RSQLite_2.3.1               fansi_1.0.4
 [43] httr_1.4.6                  abind_1.4-5                 mgcv_1.9-0
 [46] compiler_4.3.0              bit64_4.0.5                 doParallel_1.0.17
 [49] htmlTable_2.4.1             backports_1.4.1             BiocParallel_1.34.2
 [52] DBI_1.1.3                   intergraph_2.0-2            highr_0.10
 [55] MASS_7.3-60                 DelayedArray_0.26.7         rjson_0.2.21
 [58] tools_4.3.0                 foreign_0.8-84              nnet_7.3-19
 [61] glue_1.6.2                  nlme_3.1-163                grid_4.3.0
 [64] checkmate_2.2.0             cluster_2.1.4               reshape2_1.4.4
 [67] generics_0.1.3              sva_3.48.0                  gtable_0.3.3
 [70] preprocessCore_1.62.1       data.table_1.14.8           WGCNA_1.72-1
 [73] utf8_1.2.3                  XVector_0.40.0              BiocGenerics_0.46.0
 [76] ggrepel_0.9.3               foreach_1.5.2               pillar_1.9.0
 [79] stringr_1.5.0               limma_3.56.2                genefilter_1.82.1
 [82] circlize_0.4.15             splines_4.3.0               dplyr_1.1.2
 [85] lattice_0.21-8              survival_3.5-5              bit_4.0.5
 [88] annotate_1.78.0             tidyselect_1.2.0            locfit_1.5-9.8
 [91] GO.db_3.17.0                ComplexHeatmap_2.16.0       Biostrings_2.68.1
 [94] knitr_1.43                  gridExtra_2.3               IRanges_2.34.1
 [97] edgeR_3.42.4                SummarizedExperiment_1.30.2 RhpcBLASctl_0.23-42
[100] stats4_4.3.0                xfun_0.39                   Biobase_2.60.0
[103] statmod_1.5.0               matrixStats_1.0.0           stringi_1.7.12
[106] statnet.common_4.9.0        minet_3.58.0                evaluate_0.21
[109] codetools_0.2-19            tibble_3.2.1                cli_3.6.1
[112] rpart_4.1.19                xtable_1.8-4                munsell_0.5.0
[115] network_1.18.1              Rcpp_1.0.11                 GenomeInfoDb_1.36.1
[118] coda_0.19-4                 png_0.1-8                   fastcluster_1.2.3
[121] XML_3.99-0.14               parallel_4.3.0              ggplot2_3.4.2
[124] blob_1.2.4                  bitops_1.0-7                scales_1.2.1
[127] crayon_1.5.2                GetoptLong_1.0.5            rlang_1.1.1
[130] KEGGREST_1.40.0
```r
