Dispersion plot for counts data
Hi,
I'm using DESeq2 to analyze counts data that doesn't come from standard RNA-seq. In this case, the data consist of artificial sequences expressed in samples, rather than genes.
DESeq2 automatically chose a local regression fit for the dispersion estimates instead of a parametric fit, which makes sense. The dispersion plot looks fine overall, but I noticed that dispersion does not decrease with increasing counts, unlike what is typically seen in gene-level RNA-seq data.
Is this behavior expected for non-gene count data, and does it affect how I should interpret the DESeq2 results?
Thanks!
sessionInfo( )
R version 4.5.1 (2025-06-13)
Platform: x86_64-pc-linux-gnu
Running under: Ubuntu 22.04.5 LTS
Matrix products: default
BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3
LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so; LAPACK version 3.10.0
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C LC_TIME=en_US.UTF-8
[4] LC_COLLATE=en_US.UTF-8 LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C LC_ADDRESS=C
[10] LC_TELEPHONE=C LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
time zone: Etc/UTC
tzcode source: system (glibc)
attached base packages:
[1] stats4 stats graphics grDevices utils datasets methods base
other attached packages:
[1] DESeq2_1.48.0 SummarizedExperiment_1.38.1 Biobase_2.68.0
[4] MatrixGenerics_1.20.0 matrixStats_1.5.0 GenomicRanges_1.60.0
[7] GenomeInfoDb_1.44.0 IRanges_2.42.0 S4Vectors_0.46.0
[10] BiocGenerics_0.54.0 generics_0.1.3 lubridate_1.9.4
[13] forcats_1.0.0 stringr_1.5.1 dplyr_1.1.4
[16] purrr_1.0.4 readr_2.1.5 tidyr_1.3.1
[19] tibble_3.2.1 ggplot2_3.5.2 tidyverse_2.0.0
loaded via a namespace (and not attached):
[1] gtable_0.3.6 xfun_0.52 lattice_0.22-7 tzdb_0.5.0
[5] vctrs_0.6.5 tools_4.5.1 parallel_4.5.1 pkgconfig_2.0.3
[9] Matrix_1.7-3 RColorBrewer_1.1-3 lifecycle_1.0.4 GenomeInfoDbData_1.2.14
[13] compiler_4.5.1 farver_2.1.2 codetools_0.2-20 htmltools_0.5.8.1
[17] yaml_2.3.10 pillar_1.10.2 crayon_1.5.3 BiocParallel_1.42.0
[21] DelayedArray_0.34.1 abind_1.4-8 tidyselect_1.2.1 locfit_1.5-9.12
[25] digest_0.6.37 stringi_1.8.7 labeling_0.4.3 cowplot_1.1.3
[29] fastmap_1.2.0 grid_4.5.1 cli_3.6.5 SparseArray_1.8.0
[33] magrittr_2.0.3 S4Arrays_1.8.0 withr_3.0.2 scales_1.4.0
[37] UCSC.utils_1.4.0 bit64_4.6.0-1 timechange_0.3.0 rmarkdown_2.29
[41] XVector_0.48.0 httr_1.4.7 bit_4.6.0 hms_1.1.3
[45] evaluate_1.0.3 knitr_1.50 rlang_1.1.6 Rcpp_1.0.14
[49] glue_1.8.0 rstudioapi_0.17.1 vroom_1.6.5 jsonlite_2.0.0
[53] R6_2.6.1