DESeq2 on non-RNASeq counts data
0
0
Entering edit mode
vs • 0
@f039be33
Last seen 16 days ago
United States

Dispersion plotDispersion plot for counts data

Hi,

I'm using DESeq2 to analyze counts data that doesn't come from standard RNA-seq. In this case, the data consist of artificial sequences expressed in samples, rather than genes.

DESeq2 automatically chose a local regression fit for the dispersion estimates instead of a parametric fit, which makes sense. The dispersion plot looks fine overall, but I noticed that dispersion does not decrease with increasing counts, unlike what is typically seen in gene-level RNA-seq data.

Is this behavior expected for non-gene count data, and does it affect how I should interpret the DESeq2 results?

Thanks!

sessionInfo( )

R version 4.5.1 (2025-06-13)
Platform: x86_64-pc-linux-gnu
Running under: Ubuntu 22.04.5 LTS

Matrix products: default
BLAS:   /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3 
LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so;  LAPACK version 3.10.0

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C               LC_TIME=en_US.UTF-8       
 [4] LC_COLLATE=en_US.UTF-8     LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                  LC_ADDRESS=C              
[10] LC_TELEPHONE=C             LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

time zone: Etc/UTC
tzcode source: system (glibc)

attached base packages:
[1] stats4    stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] DESeq2_1.48.0               SummarizedExperiment_1.38.1 Biobase_2.68.0             
 [4] MatrixGenerics_1.20.0       matrixStats_1.5.0           GenomicRanges_1.60.0       
 [7] GenomeInfoDb_1.44.0         IRanges_2.42.0              S4Vectors_0.46.0           
[10] BiocGenerics_0.54.0         generics_0.1.3              lubridate_1.9.4            
[13] forcats_1.0.0               stringr_1.5.1               dplyr_1.1.4                
[16] purrr_1.0.4                 readr_2.1.5                 tidyr_1.3.1                
[19] tibble_3.2.1                ggplot2_3.5.2               tidyverse_2.0.0            

loaded via a namespace (and not attached):
 [1] gtable_0.3.6            xfun_0.52               lattice_0.22-7          tzdb_0.5.0             
 [5] vctrs_0.6.5             tools_4.5.1             parallel_4.5.1          pkgconfig_2.0.3        
 [9] Matrix_1.7-3            RColorBrewer_1.1-3      lifecycle_1.0.4         GenomeInfoDbData_1.2.14
[13] compiler_4.5.1          farver_2.1.2            codetools_0.2-20        htmltools_0.5.8.1      
[17] yaml_2.3.10             pillar_1.10.2           crayon_1.5.3            BiocParallel_1.42.0    
[21] DelayedArray_0.34.1     abind_1.4-8             tidyselect_1.2.1        locfit_1.5-9.12        
[25] digest_0.6.37           stringi_1.8.7           labeling_0.4.3          cowplot_1.1.3          
[29] fastmap_1.2.0           grid_4.5.1              cli_3.6.5               SparseArray_1.8.0      
[33] magrittr_2.0.3          S4Arrays_1.8.0          withr_3.0.2             scales_1.4.0           
[37] UCSC.utils_1.4.0        bit64_4.6.0-1           timechange_0.3.0        rmarkdown_2.29         
[41] XVector_0.48.0          httr_1.4.7              bit_4.6.0               hms_1.1.3              
[45] evaluate_1.0.3          knitr_1.50              rlang_1.1.6             Rcpp_1.0.14            
[49] glue_1.8.0              rstudioapi_0.17.1       vroom_1.6.5             jsonlite_2.0.0         
[53] R6_2.6.1
DESeq2 • 84 views
ADD COMMENT

Login before adding your answer.

Traffic: 645 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6