How does limpa handle imputed values when calculating array weights? The imputation of values can substantially reduce the range of weights-- is the amount of imputation in a sample somehow accounted for? This particular dataset has heavy imputation in some samples.
# data_pre: log2 intensities as measured, before limpa imputation by dpcImpute()
# data_post: log2 intensities as output by dpcImpute()
> tt = data.frame(pre_weights=arrayWeights(data_pre),
+ post_weights=arrayWeights(data_post[,colnames(data_pre)]))
>
> summary(tt)
pre_weights post_weights
Min. : 0.009924 Min. :0.5663
1st Qu.: 0.011596 1st Qu.:0.5762
Median : 5.983867 Median :1.1323
Mean : 8.051758 Mean :1.1037
3rd Qu.:14.724002 3rd Qu.:1.5426
Max. :22.258503 Max. :1.6646
> tt
pre_weights post_weights
1 2.306591830 0.7541554
2 2.498446087 0.8467711
3 2.450250245 0.8759457
4 13.167538830 1.3885982
5 17.361643218 1.4867901
6 17.193338162 1.5182567
7 9.469287812 1.6144494
8 13.161585607 1.6088279
9 12.145731036 1.6645804
10 17.608502263 1.4903662
11 22.258502590 1.5507118
12 15.242823334 1.6368382
13 0.009924181 0.5776928
14 0.011284997 0.5757023
15 0.011490783 0.5677605
16 0.011463586 0.5663395
17 0.011570698 0.5704572
18 0.011671709 0.5716048
